ト10゙は 1：CuNiヒNTS

（1）A SIMPSON \＆ J $1 \cdot 1$ COLES	Excavationg at Grandtuliy， Herthentre	AJ－C゙ 12
A M SHEALMAN	The Helmsdale Howls， －re－ase日esmont	01－10
C EAHWULU	Ine wooden artefacts trom	上1－8
	Loch Glaghan Urannog，Mld	Argyli

THE HELMSUALE BOWRS, A RE-ASSESSMENT

H M STEAROUN
x-ray t luorescence analysls of the Helmedate Bowle

PWIthow

Fiche
X-ray Aluareacence analyals of the fielardale Bows

「 Wilthew

Hethod
The bowls were exasined vigually and uging low power optical aicroscop; but metallographic gectione were not prepared.

Selected areas wer analysed elementally uging an energy diapersive X-ray fluorescence gyaten witha Rhodium target X-ray tube and allicon (lithium) detector. The beam diameter at the surface of the object was about 1.6 mm .

Evidence for gilding and groas inhomogencity in the metal was sought by qualitative or semi-quantitative analyais of geveral unprepared areag of each bowl. For theee analyses the x-ray tube was run at an anode current of 0.3 m and apectra wore collected over 200 geconde. Spectra for quantitative analyaea were collected over 500 seconds with a X-ray tube anode current of 0.5 mA . The X-Ray tube was run at 46 keV for all analygea.

The fundamental parametera program FUN1 and FUN2 imilar to the programe described by Cowell (1977 76-85), calibrated with alloy atandarde (for coppor, ainc, tin and lead) and pure element etandarda (for nickel, iron, armenio, allver and antimony) were uaed to obtain quantitative resulta. The areas to be quantitatively analyaed were degreased using acetone and then auccesively abraded with 500 grit allioon carbide paper,
degreased, and analyaed until consistent resulta were obtained. Early analyaes included analysia of the area before abrasion followed by four or five abraaion/analyaia cyclea, but it was found that after one abragion the reaulta did not change aignificantly and for later analyaes two conaiatent resulta for abraded gurfaces were conaidered adequate. Multiple analysoa of each object were not poseible because of the ffect on the appearance of the objocte and limitationg of time. However semiquantitative analyais of unpreparad areas did not suggest that inhomogeneity was a major problem.

All nine elementa ligted above were analyaed for, but nickel, ailver and arsenic were not detected at levels above the mindmum detaction limit (see below) in any overall result and they are not ligted in Table 1 . The figures are qubject to a relative error (error ag a percentage of the quoted figure) due to the counting atatistica. For any particular element the relative error increapes ws the absolute percentage pregent decreageg, and it alao depends on the aatrix in which the olement ia present. It ahould be remembered that any errorm due to uncertaintiea in calibration are not included in the relative error, and that internal comparisone are more reliable than comariane with other publiahed data. An estimate of the relative error fone standard deviationl is given below for each eleaent detected at aigificant levelg together with the minimun detection limite assumed for frach element

Eloment	Relative	Detection
	Error	Limit
Cu	0.5\%	0.05\%
$2 n$	2.0x-10.0\%	0.2\%
Pb	5.0x-10.0x	0.1\%
Sn	1.0x-2x	0.2%
N 1	-	0.2\%
Fe	20\% +	0.1\%
As	-	0.2\%
Ag	-	0.2\%
Sb	20\% +	0.2\%

Taple 1 i Composition of the Helmadale BoHLs

objeot	Area		Fe	Cu	2 n	P	8 n	$6 b$
xL 1986.4	Body		-	00.0	4.0	0.0	4.9	-
	ratch		-	89.7	1.7	1.2	7.3	0.2
	Rivet	1	-	88.5	4.2	0.5	6.6	0.1
	Rivet	2	-	88.6	4.3	0.7	6.3	0.2
	Rivet	3	-	87.9	4.4	0.8	6.8	0.2
	Rivet	4	-	87.0	4.2	0.0	6.8	0.2
	Rivet	8	-	87.8	4.3	0.9	6.7	0.3

xL	1986	. 5		\cdots	88.2	0.6	1.5	9.7	-
	1086	. 6		-	87.2	-	1.0	11.9	-
$\times \mathrm{L}$	1986	. 7	Bowl	-	85.3	$-$	1.2	13.4	-
			Patch	0.2	86.6	0.6	1.2	11.7	-
	1986	. 8		-	88.3	-	0.5	11.2	-
	1986	. 0		-	85.2	-	1.3	12.8	-
$\times \mathrm{L}$	1986	.10	Bowl	0.1	86.1	3.7	0.5	9.5	0.1
			Rim	-	87.6	-	0.6	11.6	0.1
			Handie	0.2	86.8	5.9	1.6	6.4	0.1
			Rivet 1	0.1	87.3	0.2	0.3	11.6	-
			Rivet 2	-	87.5	-	1.0	11.2	0.2
			Rivet 3	-	87.6	\rightarrow	0.9	11.3	-
			Rivet 4	0.1	86.6	0.8	2.0	10.4	0.1

```
-mean value wag bulow the minimum dotection liait.
Note: Becaume of the way the above figurea tere obtained, gome of
the analysos do not sum to 100%
Luad was present at low levels in all the areas analyeed. It is
often distributed inhomoseneougly throush a copper alloy and
varlatione at the levele observed in these objectesere not
therefore of sreat sitnificance.
```


Abstract

Iron ia a common contaminant of surface analyses on buried material and it ia difficult to asaess the aignificance of low levela of iron (Mortimer, Pollard 4 Scull, 36-42) in XRF analyaes of this type. In the pregent work, therefore, the variationg in iron levele detected could not be regarded as significant.

Bibliography

Cowel, M 1977
'Energy diaperaive X-ray fluoresconce analysia of macient gold alloys: RACT, 1 (1977), 76-85

Mortimer, C, Poliard, A $M, \&$ Scull, C 1986
'XRF Analysig of gome Anglo-Saxon copper finde from watchfield,
 (1986), 36-42.

```
Appendix ~ full liat of all analytical regulta (normaliaed to 100%)
```

Object	Area	Abra-	F	Cu	$2 n$	$A \mathrm{~B}$	Гb	$A g$	Sn	Sb
siona										
L1986.4	Bowl	0	nd	88.98	3.86	0.07	0.35	0.01	6.40	0.27
L1986.4	Bowl	1	nd	90.08	3.86	0.06	0.90	nd	4.96	0.07
L1986.4	Bowl	2	0.04	89.94	4.06	0.11	0.92	nd	4.91	0.02
L1986.4	Patch	1	nd	89.84	1.63	0.03	1.03	0.01	7.13	0.27
L1986.4	Patch	2	0.02	89.46	1.66	nd	1.27	nd	7.62	0.07
L1986.4	Rivet	11	0.02	88.30	4.22	0.08	0.61	nd	6.60	0.12
L1986.4	Rivot	12	0.06	88.59	4.12	0.07	0.46	nd	6.68	0.12
L1986.4	Rivet	21	0.03	89.65	4.30	0.04	0.64	nd	6.27	0.17
L1986.4	Rivot	22	0.02	88.49	4.25	nd	0.77	nd	6.28	0.19
L1986.4	Rivet	31	0.05	87.92	4.31	0.06	0.75	nd	6.79	0.12
L1986.4	Rivet	32	nd	87.78	4.42	0.06	0.75	nd	6.81	0.18
L1986.4	Rivet	41	0.00	88.09	4.12	nd	0.80	nd	6.73	0.17
L1986.4	Rivet	42	nd	87.68	4.26	nd	0.93	nd	6.94	0.19
L1986.4	Rivet	31	0.03	87.60	4.38	0.07	0.86	nd	6.85	0.32
L1986.4	Rivet	52	nd	87.88	4.14	nd	0.36	nd	6.68	0.34

L1986.5	0	nd	88.64	0.63	nd 1.19	nd	0.61	0.03	
L1986.5	1	0.03	88.10	0.61	nd 1.44	nd	0.72	0.10	
L1986.5	2	nd	88.25	0.67	nd	1.45	0.02	0.70	0.01
L1986.8	3	0.04	88.05	0.64	nd 1.64	nd	0.73	nd	

1.086 .6	0	nd	87.16	nd	nd 0.78	0.02	12.05	nd
$L 1086.6$	1	0.0286 .86	nd	nd 0.07	nd	12.15	nd	
$L 1086.6$	2	0.0287 .12	nd	0.120 .80	nd	11.85	nd	

L1986.6		3	nd	97.25	nd	nd	1.01	nd	11.74	nd
11986.6		4	nd	87.10	nd	0.01	0.93	n.d	11.96	nd
L1986.7	Bowl	0	nd	85.68	nd	nd	1.02	nd	13.40	nd
L1996.7	Bowl	1	nd	85.37	nd	0.05	1.09	0.03	13.46	nd
L1986.7	Bowl	2	0.02	85.34	nd	nd	1.24	nd	13.40	nd
11986.7	Howl	3	nd	85.20	nd	nd	1.40	nd	13.30	0.10
L1986.7	Patch	0	0.08	87.740	0.56	0.07	0.84	nd	10.71	nd
L1986.7	latch	1	0.06	87.170	0.52	nd	1.08	nd	11.17	nd
L1986.7	latch	2	0.10	86.740	0.65	nd	1.16	0.05	11.40	nd
L1986.	Patch	3	0.12	86.260	0.54	nd	1.14	nd	11.94	nd
L1986. 7	I'atch	4	0.19	86.700	0.43	nd	1.19	0.02	11.47	nd
L198ti. 8		0	nd	99.13	nd	0.10	0.31	0.02	10.44	nd
L1986.8		1	nd	88.14	nd	0.11	0.36	nd	11.39	nd
L1986.8		2	nd	88.20	nd	0.03	0.44	0.01	11.26	nd
L1986.8		3	nd	88.34	nd	0.07	0.51	nd	11.08	nd
41096.9		0	nd	85.62	nd	nd	1.43	0.06	12.89	nd
11986.9		1	nd	86.57	nd	0.01	1.61	0.08	12.73	nd
L1986.9		2	nd	86.41	nd	nd	2.07	nd	12.52	nd
L1986.9		3	nd	85.05	nd	nd	2.13	0.03	12.70	nd
L1986. 1		4	0.04	84.88	nd	nd	1.90	0.05	13.21	0.03
41986.9		5	nd	86.64	nd	0.07	1.76	0.06	12.48	nd

Object	Aгea	Abra-	Fe	Cu	$2 n$	As	Pb	AG	Sn	Sb
		gions								
L1986.10	Bowl	1	0.13	86.13	3.62	0.11	0.39	nd	9.47	0.15
L1986.10	Bowl	2	0.02	86.07	3.75	0.04	0.60	nd	0.52	nd
L1986.10	Rim	1	nd	87.77	nd	0.13	0.40	0.05	11.65	nd
L1986.10	Rim	2	nd	87.48	nd	0.11	0.55	nd	11.61	0.25
L1986.10	Hendle	1	0.21	85.77	6.02	0.06	1.57	nd	6.37	nd
L1986.10	Handle	2	0.19	85.82	5.82	nd	1.56	0.06	6.41	0.16
L1986.10	Rivet 1	1	nd	87.48	0.21	0.10	0.72	nd	11.49	nd
L1986.10	Rivet 1	2	0.12	87.08	0.22	nd	1.00	nd	11.58	nd
L1986.10	Rivet 2	1	0.03	87.155	0.03	nd	1.00	0.03	11.26	nd
L1986.10	Rivet 2	2	0.06	87.44	0.05	0.02	0.92	nd	11.18	0.34
L1986.10	Rivet 3	1	0.05	87.77	0.05	0.11	0.81	0.01	11.20	nd
L1986.10	Rivet 3	2	nd	87.46	nd	0.05	1.05	nd	11.38	0.06
L1986.10	Rivet 4	1	0.06	86.58	0.88	nd	2.12	nd	10.36	nd
L1936.10	Bivet 4	2	0.11	86.61	0.77	nd	1.96	0.06	10.37	0.23

Note : Nickel was not detected in any analyale

Abstract

The resulte above represent the raw data obtained and the fact that thes are quoted to 0.01% doen not imply that the method used is accurate to 0.01\%. Table 1 gives the best estimate of the mctual compoaition of the objecta obtainable by the method used.

