5 The artefactual evidence by Beverley Ballin Smith, Torben B Ballin and Paul Sharman

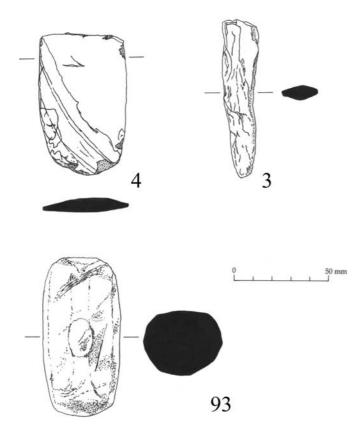
5.1 Introduction

A total of 154 artefacts from Trench A were analysed; details of that analysis can be found in the catalogues below (Section 5.6). During the course of the excavation each small find (SF) was given a unique number, which provides a direct link to the site archive and the museum acquisitions. Table 4 shows the numbers of artefacts, their types, and phases of the site.

Most of the finds are of stone and include ard points, hand tools, miscellaneous stones, quartz fragments and steatite vessels, although some ceramic material was also recovered. Some of the steatite was used in the construction of the house, as were discarded stone tools, although most of the diagnostic artefacts were found in levels associated with the abandonment of the house. There was a dearth of ecofacts: deposits of shell, animal bone and organic material suitable for radiocarbon dating (Section 4.3). The only metal artefacts were recent in origin.

Only six artefacts (4% of the total assemblage) were found in the pre-house earth surface and subsoil levels. These comprised ard points and fragments, chipped bars and thin bars. A single quartz tool was also present, but this, and other quartz pieces, were lost before they could be analysed and are therefore not represented in Table 4.

The construction levels of the house represented by the drain, walls, wall cores and entrance area yielded 14 artefacts (9% of the total), including ard fragments, a pecked bar and several thin stone bars. Quartz tools and steatite vessel fragments were also recovered. Discarded tools (worn out, damaged beyond repair or unsuccessfully manufactured) were used as building stone in the construction of the house.


Contexts from the use of the building produced only two artefacts (1% of the total), part of an ard point and a large fragment of a steatite vessel (Illus 35). The paucity of finds from the occupation levels demonstrates the thorough cleaning of deposits within the building during its use, or the removal or levelling of deposits at a later date.

One of the largest concentrations of finds came from the abandonment horizon and the accumulation of soils over the shallow house deposits. The recovery of 45 artefacts (29%) from these deposits was possibly the result of clearance and reworking of earlier deposits. A large number of ard point fragments (15), worked stone bars and other worked stones came from the accumulation of subsoil. This phase also yielded the largest number of ceramic sherds (6) and three miscellaneous objects comprising a worked piece of steatite, a worked stone point and a polished felsite knife (Illus 21; Illus 22).

Phase 2 Phase 3 Phases 4 and 5 Phase 6 Phase 7 Type of tool Total number of tools Quern 1 1 Small miscellaneous 3 3 2 Handled tools 1 1 Ard points (complete) 5 1 4 Ard points (fragmentary) 47 10 1 18 18 Chipped bars 12 5 1 5 1 Pecked bars 3 1 2 2 Thin bars 9 3 4 Irregular bars 7 3 4 Small hand tools 3 2 1 Miscellaneous pebbles 7 3 4 31 Quartz 31 Steatite vessel fragments 11 1 1 6 Ceramic fragments 7 4 11 Iron pieces 2 2 **TOTALS** 154 20 2 45 85

Table 4 Distribution of artefacts by phase

^{*} quartz was recovered from these phases but has since been lost

Illus 21 Polished felsite knife 4, stone point 3 and miscellaneous stone 93

With the development of a 0.5m depth of soil, it is quite likely that ploughing took place in close proximity to the shell of the house, thus accounting for the number of broken ard points found there. It is possible therefore that the enclosure was not abandoned altogether when the house was deserted. The only quern recovered from the excavation was found in a context that spanned the abandonment and reuse of the structure, from which quartz was also recovered.

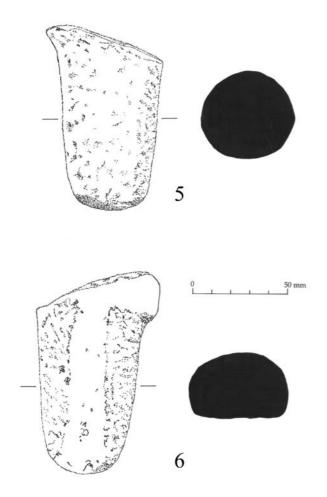
The later reuse of the house is demonstrated by the occurrence of a shaped stone handle, some ceramic sherds, ard point fragments, a stone bar and quartz tools. Compared to the finds retrieved from the primary use of the house, the later reuse was less productive in numbers as well as types of finds.

The highest number of artefacts was associated with the abandonment of prehistoric activity on the site and its reuse as a *planticrub*. This phase accounted for the occurrence of 85 artefacts (56%) with the largest numbers identified as ard point fragments, complete ard points (Illus 24), stone bars and quartz tools (Illus 31). The shaft of a handled stone tool (Illus 23, no 6) was also found at this level. The occurrence of these objects is probably the result of the prehistoric house being disturbed during the construction of the *planticrub*. The only fragments of iron retrieved from the site were in the topsoil.

Illus 22 Polished felsite knife 4

5.2 The coarse stone artefacts

5.2.1 Geology and classification

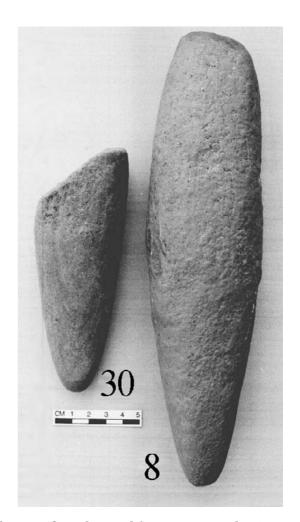

All the artefacts reflect the use of locally available stone with the exception of a few sandstone tools and a polished felsite knife. Although not made from local rock, these most probably originate in Shetland (Section 5.2.6 & Section 6.2). The rest of the finds are of stone from either surface scatters, such as schists, or from readily available steatite outcrops.

The artefacts show a remarkable homogeneity of rock type, schist being the main local stone, and imported stone artefacts are rare. Indeed, the range of varieties of schist suggests that it was suitable for a wide range of tool types and was a versatile stone, one that could be shaped by pecking, chipping, grinding and hammering. Ard points were made from all the available varieties of schist (micaceous, phyllitic, garnetiferous, samitic and schistose) whereas the handled tools and the pecked bars are of plain schist. The two latter categories of artefact may indicate that plain schist was easier to shape by pecking, or was used for more specific purposes.

Six of the artefacts were made from flagstone and either iron-rich, mildly metamorphosed or micaceous sandstone. Sandstone occurs about 1.5–2km to the south and north-east of Catpund (Mykura 1976, 62–4). The number of these artefacts, accounting for 4% of the total, does not constitute a major exploitation of the sandstone resources, and reinforces the idea that the schistose rock types were adequate for the needs of the settlement.

Approximately 8% of all the tools, whether of sandstone or schist, suffered some loss of the stone surface due to natural flaking or post-depositional weathering. This caused surface features of the affected tools to be obscured or lost.

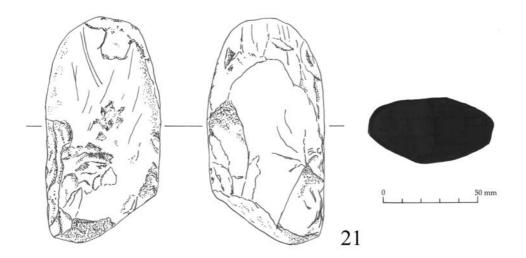
The artefacts have been classified by their typology and morphology, including their shape, size, weight, the tooling techniques employed to produce the artefact, and by wear marks formed during use. In so doing, various terms have been used for the manufac-

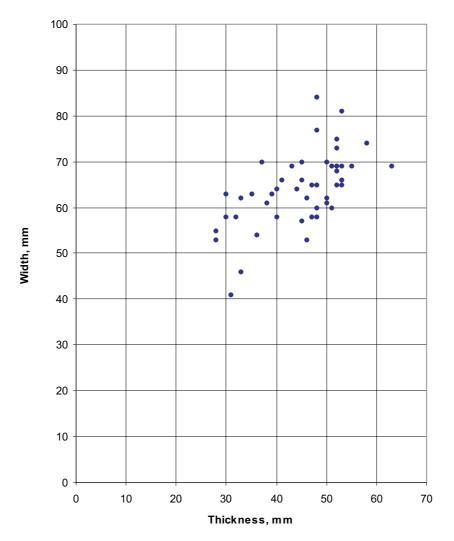

Illus 23 Handled tools 5 & 6

turing processes and the action of wear on the tool. These include:

- hammering: a violent striking action creating large flaked scars on the stone, or breakages;
- pounding: the action of breaking into small pieces, and the result of that action;
- chipping: striking small pieces off the stone surface by sharp cutting blows;
- pecking: small marks made on the stone by a sharp pointed implement to roughen its surface;
- grinding: producing a crushed or rubbed surface which is often facetted due to the angle the stone is held during manufacture or use;
- polishing: rubbing with or against fine material to produce smoothed areas.

5.2.2 Quern (Section 5.6.1)

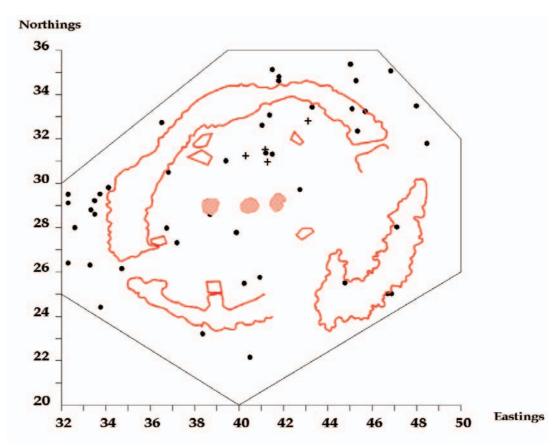

One non-rotary quern was retrieved from a level associated with the secondary reuse of the building. Made on a sandstone boulder, it showed signs of use but unfortunately it is not diagnostic of any particular prehistoric period. Unfortunately, the quern was lost and could not be relocated for further study or illustration, and its analysis and discussion remains incomplete.


Illus 24 Complete and fragmentary ard points 30 & 8

5.2.3 Handled tools (Illus 23; Section 5.6.3)

Two finely shaped stone handles (nos 5 and 6) are of an unusual tool type. Each has a rounded butt end which is pecked all over and broken across the top of the shaft. The earliest (no 5) was retrieved from a level dated to the secondary use of the house site, and the other from its abandonment. These are fragmentary tools which demanded much skill and time to make, and might have been handles for clubs or choppers. Handled clubs were noted at Scord of Brouster and Jarlshof, the latter from the earliest Bronze Age settlement (Hamilton 1956, 15, fig 7). Similar and more complete examples can be found among the assemblage from the prehistoric houses at Sumburgh (Downes & Lamb 2000, 34), now on display in the Shetland Museum, Lerwick, where finely worked handles have been identified as club-shaped implements. Fojut describes these artefacts as 'Shetland Clubs', and notes that they are often decorated and thought to be Bronze Age in date, although further research is needed to understand the function and dating of such tools (Fojut 1986, 22).

Illus 25 Worn ard point 21

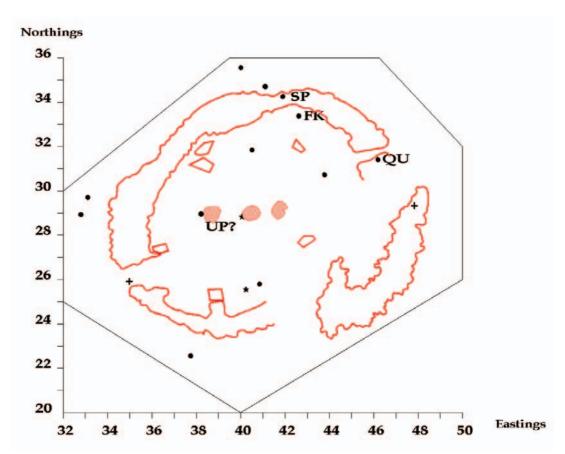


Illus 26 xy scatter chart of ard point widths and thicknesses.

5.2.4 Ard points and ard point fragments (Illus 24; Illus 25; Section 5.6.4 & 5.6.5)

The Catpund site produced only five complete ard points, although there were another 47 fragmentary

examples. An ard point is the shaped stone of a primitive plough that was drawn through the soil to break up the turf and tilth. At Catpund, ard points were made from linear stones approximately 260–410mm long and 50–70mm wide. They are usually


Illus 27 *Distribution of ard points* (+) *and fragments* (●)

oval in cross-section, about half as thick as they are broad. The stones were generally chipped roughly to shape and then pecked all over to remove irregularities on the surface of the tool. The fine roughening of the surface of the stone by pecking may have also helped to keep the tool in its wooden housing (Rees 1986, 75). Both ends of the stone were normally chipped to a tapering shape although the butt end could be rounded or broken straight across the grain of the stone. On some of the ard point fragments there are opposed pecked indentations on the surfaces of the tool, 70-140mm from the worked tip or more rarely on its side. These markings are presumably from, or for, the wooden housing of the plough (Ann Clarke, pers comm). Multiple indentations on the surface of the stone may indicate adjustment in the housing after a period of use.

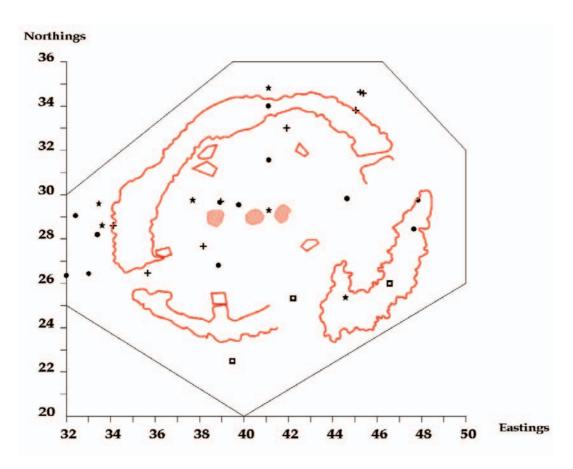
When the ard point was dragged through the soil its work end, or tip, would become polished with use. The tip often showed facetted wear-patterns caused by the angle at which the stone was set in the plough. Many of the highly polished tips of ard point fragments were later roughened by repecking, although Rees sees this as a preparation for the reversal (or turning round) of the tool (Rees 1986, 75). On some of the Catpund ard point fragments the pecking is discrete as if to aid the efficiency of the tool in the ground. Throughout their useful life, ard points were often turned over, as shown by wear patterns at the tip, and were also reversed, the butt end being used as the working tip once the tip had been damaged or severely worn. Most

of the ard point fragments are broken across their shafts, and are usually thinner than complete points. Others show signs of very heavy wear. A successful ard point was one that did not break in the ground, or could be turned over or reused when one end of it was worn.

The paucity of complete and points compared to the numbers of fragmentary tools makes any statistical analysis of them difficult. However, an attempt has been made to plot their thickness against their width to show that similarly sized stones were chosen, or that stones were altered to form tools of similar dimensions (Illus 26). It has not been possible to look in more statistical detail at the changes in the shape and length of ard points, or their patterns of wear over time, largely because of their uninformative stratigraphic locations (Illus 27). The sites at the Scord of Brouster produced 75 ard points (Rees 1986, 75) of similar dimensions to those from Catpund, although they were made from sandstone. The settlement at Scord of Brouster may be contemporary with or earlier than Catpund, although there was no visible difference in ard point form or wear patterns. The late Bronze Age/early Iron Age house at Mavis Grind produced only one ard point, but several ard marks from abandonment levels. In contrast, the site at Sumburgh yielded over 150 ard points, and a fragmentary Bronze Age ploughed field was also excavated (Lamb 1985, 29-38). Remains of ard marks and fields were sought on the flatter areas of the hillside around the Catpund house. However, due to

Illus 28 Distribution of various stone tools (miscellaneous stones \bullet , handled tools +, small hand tools *, stone point SP, felsite knife FK, quern QU and an unworked piece UP?)

the soil conditions, waterlogging and/or earthworm activity, no traces were found.


5.2.5 Stone bars (Section 5.6.6, 5.6.7, 5.6.8 & 5.6.9)

The most numerous stone artefacts after ard points are chipped stone bars, of which there are 12. They are similar to ard points in shape, being linear but with a more rounded cross-section. All are chipped and have peck marks. Usually they have two chipped edges (the work edges), or one chipped and one pecked edge. Where the butt end survives it is usually rounded, although all the tools from Catpund tools are fragmentary. With incomplete objects there is often some uncertainty about their classification, particularly with chipped bars, some perhaps being unfinished ard points that broke in manufacture. These tools, however, do not share all the characteristics of ard points and have been classified as separate artefacts in their own right. Statistically it can be demonstrated that chipped bars were usually made on wider stones than ard points. The difficulty of classification and interpretation of these tools was also noted at Kebister (Clarke 1999a, 153).

Other stone tools include pecked bars (three), thin bars (nine) and irregular bars (seven). Pecked bars were made on rounded and elongated stones, 72–

80mm wide and 46-56mm thick. Their characteristics include all-over pecking, with linear or rounded depressions on the faces, possibly indicating that they had been hafted. Where the ends of the tools survive, there is evidence of grinding and hammering, suggesting a difference in tool type from the chipped bars, or the reuse of a broken artefact. Thin bars are spatulate, made on stones approximately 21–31mm thick. Their lengths and widths vary, but all the tools are fragmentary. Some may have had handles that had been shaped by pecking, but all had been broken at the base of the shaft. These tools were chipped along a single edge, or both edges, and at the work end. Most of them, however, show evidence of wear, usually in the form of polish marks at the work end or on one face. It is possible to suggest that they were used specifically for rubbing or scraping, but not necessarily exclusively for those activities. The thin bars are not unlike the handled clubs found at Scord of Brouster (Rees 1986, 82, fig 65), although the pattern of wear is different and therefore presumably so was the function.

The last category of this type of stone tool is the irregular bar, of which there are only seven fragmentary examples. Of these, five are possibly unfinished tools, and one may be an altered ard point. Apart from the latter, they exhibit no evidence of use as the loss of the stone surface is quite marked on the majority of these tools.

Illus 29 *Distribution of stone bars (chipped bars •, irregular bars *, pecked bars □, thin bars +)*

5.2.6 Small hand-tools (Section 5.6.10)

The three small hand-tools are heavily-worn, rounded stones that exhibit evidence of all-over chipping and pecking. They are more complete than the other tools, although some of their features have been obscured by the natural flaking of the surface of the stone. These tools would have been hand-held and used at either end, or along their edges.

A heavily worn, polished knife fragment of felsite (Illus 21, no 4) was found in the abandonment layers of the prehistoric house. Knives like this are typical finds from prehistoric house sites in Shetland. One highly worn fragment from Mavis Grind (Cracknell & Smith 1983, 27) may have been reused long after it was originally made. A knife fragment was also found at Scord of Brouster (Whittle et al 1986, 82), and fragments of two others from Tougs are possibly Early Bronze Age in date (Hedges 1986, 19, 30). The knife is also comparable to those retrieved from sites such as Stanydale and Benie Hoose, and commonly dated to the Neolithic (Calder 1956, 392). It has been suggested that polished knives may have developed along with polished axes and mace heads at the end of the Neolithic period, and were intended mainly as status objects or votive offerings as they have often been recovered in an unused state (Fojut 1986, 16).

A small worked stone point (no 3) was also retrieved from the abandonment level. Its precise function is uncertain.

5.2.7 Miscellaneous stones (Section 5.6.11)

Seven miscellaneous stones were recovered. Most of them are small, with dimensions less than 100mm; four of them have pecked or chipped indentations on one of their surfaces, indicating their possible use as anvil stones. Some of the stones, such as no 93 (Illus 21; Illus 30), exhibit other wear patterns associated with rubbing or polishing, pounding or chipping.

5.2.8 Discussion

All the types of stone tools described above have been found in varying numbers at other prehistoric sites in Shetland. The local geology has affected the range and type of artefacts produced, and their methods of manufacture. In general, prehistoric sites have yielded many types known latterly as rough or rude stone tools. Classification of these tools is problematic, as there has been little standardisation of terminology concerning the description of their shape, manufacturing characteristics or patterns of wear. From the above, it is clear that there is little distinction in the attribute descriptions of the separate tool types. From broken or damaged artefacts it is often difficult to classify precisely whether, for example, a chipped bar is a functional tool in its own right, or a roughout for an ard point. The fragmentary nature of the majority of the Catpund artefacts prevents more

Illus 30 Miscellaneous stone object 93

detailed classification and analyses of their size, shape and weight (see Section 5.6 for details of the stone artefacts).

Classification of the stone artefacts is based on morphology rather than functional attributes, although the terms 'ard point' and 'quern' also imply a function. It is highly likely that the stone bars, small hand tools and miscellaneous stones had several functions and in general could be referred to as 'multiple use tools', but this in itself does not help define their function and attributes further. From some of the wear patterns on the stone tools it is possible to see the angle at which they were held and how they were used, but not necessarily what they were used for. There is also the problem that in some examples there is no clear distinction between the marks used to make the tool and those resulting from its use. The Catpund tools are fragmentary and relatively few in number and, with present knowledge, it is impossible to define their function further. More research into the stone tools of the Northern Isles, their geological variations, differences and similarities in manufacturing techniques, as well as comparison of stratigraphic and dating evidence from sites is necessary (Clarke 1999b; Clarke 2000a; Clarke 2000b). Stone tools often form the most numerous and weightiest groups of artefacts from prehistoric sites in the Northern Isles, but the amount of information they tell us about life in the past is limited, as their functions remain largely obscure.

5.3 The quartz assemblage (Section 5.6.14) Torben B Ballin

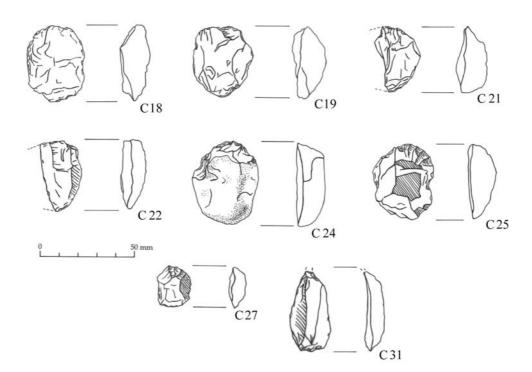
A total of 31 bags of quartz were recovered from the site. Unfortunately, all but one of the bags (SF 513, comprising 31 pieces from Phase 5 of the site) was lost and the following analysis is based on this small sample, together with information from the site archive and from interim artefact reports produced in 1988 and 1990. If SF 513 represents an average bag, it can be estimated that the assemblage originally comprised approximately 900 pieces of quartz.

However, this bag is from a small, dense, concentration of samples from the north-west area of the building. It is likely, therefore, that this bag contained a higher than average number of quartz pieces. With this in mind, a more realistic estimate of between 450 and 900 pieces is proposed. SF 513 could, therefore, plausibly account for 3.3–6.7% of the total assemblage. As the contents of this bag are typical of quartz assemblages from other late Neolithic and Bronze Age sites in the west and north of Scotland (Calder 1956; Hamilton 1956; Finlayson 1996; Whittle *et al* 1986; Clarke 1999b; Ballin forthcoming a; Ballin forthcoming b), it is quite possible that the surviving material is representative of the entire Catpund assemblage.

The individual surviving pieces have been allocated numbers, which correspond to those in the site archive (Section 5.6.14), each piece being prefixed by C (eg C29).

5.3.1 Raw material

The assemblage consists entirely of good quality, white milky quartz. It is very homogeneous, although some pieces contain inclusions of mica ranging from small specks to more substantial, cross-cutting layers which constitute planes of weakness. In some instances (C7 and C28), pieces have flaked along these planes, while breakages on two pieces (bipolar core C21 and scraper C28) initiated from mica inclusions. A number of flakes and cores have brown stains on their surfaces, probably iron pan.


The source of the quartz is uncertain although one scraper (C24) is on a primary flake, the dorsal face of which is completely covered by cortex. This cortex constitutes a smooth, abraded surface, revealing that this artefact, and possibly the entire assemblage, derived from a pebble source, probably from a nearby shore.

5.3.2 Debitage

The debitage assemblage comprises 18 flakes, 17 of which are typical bipolar flakes, while one may be a platform flake. There are no chips, indeterminate pieces or blades. The cores (see below) are proof that primary production took place at the site, and chips would undoubtedly have been present in prehistory,

Table 5 List of quartz artefacts (SF 513)

Debitage		No	%
	Bipolar flakes	17	
	Platform flakes (?)	1	
	Total debitage	18	58
Bipolar cores		5	16
Tools	Borers	1	
	Short-end scrapers	7	
	Total tools	8	26
TOTAL		31	100

Illus 31 The quartz tools

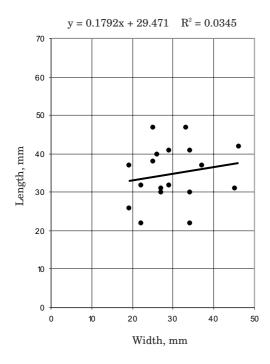
their absence in the surviving sample solely a result of the chosen retrieval policy which did not include systematic sieving. Given the poor quality of the quartz (primarily the abundance of mica inclusions or layers), it is likely that the original assemblage included a substantial number of indeterminate pieces. The absence of blades is to be expected, as quartz is less suited for systematic blade production than finer varieties of silica.

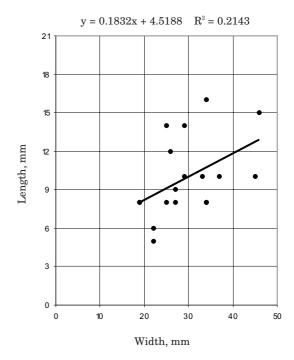
5.3.3 Cores (Illus 31)

There are five cores, all of them bipolar. They have a uniform appearance, with average dimensions of 38mm by 29mm by 15mm. The average length (terminal to terminal) varies between 34mm and 42mm. Three cores are intact and two are fragmented. One of the fragmented cores (C21) has had a corner broken off, and the other (C22) has been split diagonally. All of the cores have two distinct crushed ridges or terminals. However, small flake scars from the lateral sides, running perpendicular to the main production axis, show that unsuccessful attempts were made to reorientate the cores and create new production axes (cf Ballin 1999).

5.3.4 *Tools* (*Illus* 31)

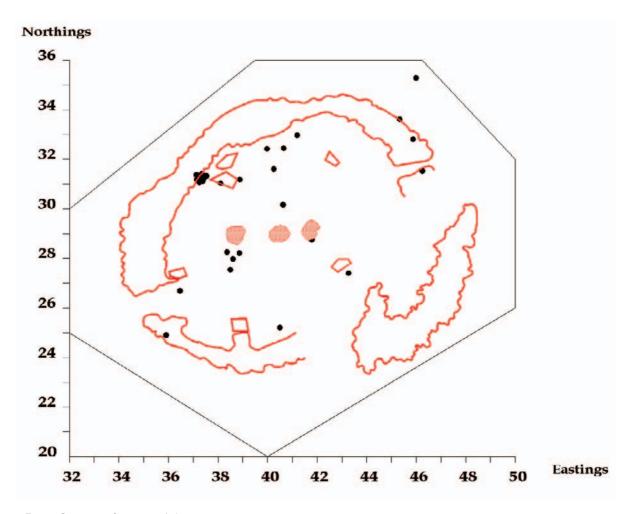
This group comprised seven scrapers and one borer, making up 26% of the assemblage. The high tool ratio is partially the result of the lack of sieving, and partially the small sample size. Nevertheless, the dominance of scrapers is probably a true reflection of the original assemblage, as scraper dominance is


typical of Neolithic and Bronze Age quartz sites in Shetland (Calder 1956; Hamilton 1956; Whittle *et al* 1986; Clarke 1999b; Finlayson 2000; Ballin forthcoming b).


The sole borer measures 42mm by 21mm by 9mm and was made on a regular bipolar flake. The tip was at the distal end, which has broken off. The only remains of the retouch of the borer tip are two notches, one on each lateral edge, immediately next to the distal break.

Six of the scrapers are short end-scrapers and one (C25) is a double scraper. The scrapers have average dimensions of 35mm by 29mm by 13mm although one, a thumbnail scraper (C27), has a greatest dimension of only 21mm. They are all made on bipolar flakes. The steeply retouched scraper edges are generally convex, although one (C26) is straight to slightly convex, and one (C28) is slightly denticulated. In four cases (C28–30 and double-scraper C25), the working edges have been broken off, and the former presence of scraper edges is only revealed by short lengths of surviving retouch at the corners of the breaks. The damage of the scraper edge of C28 was caused by a small mica inclusion, whereas the breakage of the other scrapers followed the inherent planes of weakness so typical of quartz. Doublescraper C25 has a distinct notch in each side, probably an attribute associated with hafting.

5.3.5 Technology


Even though only a small proportion of the quartz pieces recovered from site remains, some basic assumptions can be made about the technology responsible for their manufacture.

 ${\it Illus~32~Correlation~between~length~and~width~of} \\ {\it the~quartz~flakes}$

 ${\it Illus~33~Correlation~between~width~and~thickness} \\ {\it of~the~quartz~flakes}$

 ${\it Illus~34~~Distribution~of~quartz~(\bullet)}$

It is clear that the primary technology employed on the material was exclusively bipolar, with only one flake possibly deriving from a platform core. All eight modified flakes and all five cores are bipolar. One scraper (C24) has a corticated dorsal surface, suggesting that the quartz was collected at a local pebble source. For detailed descriptions of roughly contemporary lithic technologies see Ballin forthcoming a and Ballin forthcoming b.

It is highly likely that the choice of reduction techniques, on sites where quartz represented the only viable lithic resource, was dictated by the occurrence of either vein quartz (favouring a platform technique), or pebble quartz (favouring a bipolar technique). Vein quartz was often collected as relatively large blocks, allowing the preparation of platform cores, whereas pebble quartz occurred only as relatively small nodules. In the latter case, preparation would have wasted too much of the raw material (Ballin 1999). It may also have been difficult to decorticate small, oval nodules, as the hammerstone would tend to glance off the external surface. The most effective approach seems to have been the bipolar hammer and anvil technique of splitting the nodules (Finlayson 2000, 105). Examination of the correlation (R2) between length and width, and between width and thickness of the flakes (Illus 32; Illus 33) demonstrates that no attempt was made to produce blanks of a particular shape, and very little attempt was made to produce blanks of a certain relative thickness. The correlation between length and width is as low as 0.03 and the correlation between width and thickness is only 0.21.

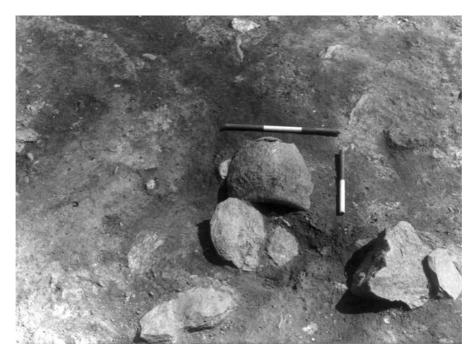
5.3.6 Spatial distribution (Illus 34)

As only a minor proportion of the recovered quartz could be located, it was not possible to examine and classify more than 3–7% of the assemblage (31 pieces). As a result, only a general distribution map could be produced, based on the original finds list and reports. Illustration 34 shows the distribution of quartz across the site, but does not categorise this material according to type (debitage, cores or tools).

The surviving material, comprising debitage, cores and tools, formed part of a dense cluster in the north-west corner of the site. Only a small proportion is from early phases, with most finds (71%) deriving from the late abandonment phase (Phase 6) or recent, disturbed layers (Phase 7). Some quartz, from prehouse levels (Phase 1), was located between the drain and the wall in the north of the site. A larger quantity, the deposition of which was contemporary with the construction of the house (Phase 2), was recovered from around the north-east wall and the area immediately outside it. No quartz is associated with the main occupation (Phase 3). A moderate amount, dating from the first abandonment (Phase 4), was located between the drain and the wall while a somewhat larger quantity, contemporary with the reuse of the building (Phase 5), was retrieved from its centre and from within wall tumble to its south and east. Most of the quartz was recovered from the second abandonment and modern reuse of the site (Phases 6 and 7), the majority of it from the central and western part of the house, and only a small amount from the immediate south-west of the building.

There were two notable concentrations of quartz: Cluster 1 in the north-west corner of the house, between the wall and the west orthostat; and Cluster 2 between the hearth complex, the south orthostat and the entrance. Both clusters may represent activity areas but the higher density of Cluster 1 suggests that this may be a cache of raw material, blanks and tools. The total lack of indeterminate pieces and chunks in Cluster 1 (SF513) suggests that there had been some sorting of this material, supporting the hypothesis of a cache. The general distribution of quartz from Phases 6 and 7 suggests that quartz was knapped or used after the final abandonment of the house, and that the building's collapsed walls were substantial enough to act as a wind break in a tough natural environment.

5.3.7 Dating


Quartz was retrieved from all levels (pre-house, second usage, and early and late abandonment), except the main occupation phase (Phase 3). The quartz assemblage has limited value for dating the house and its associated activities. There are no diagnostic artefacts within the material and none of the attributes associated with raw material or technology have any chronological significance. The fact that a well-developed lithic technology post-dates the house is of no chronological value, as quartz was used in Shetland until the early Iron Age (Clarke 1999b, 166). With our present knowledge of the Scottish quartz industry, the Catpund assemblage can only provide a date of Neolithic to early Iron Age.

5.4 Steatite (Section 5.6.12)

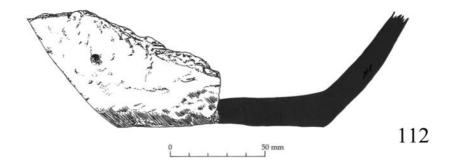
Considering the location of the prehistoric house besides one of the prime sources of the material in Shetland, few steatite finds were recovered from the site. Nevertheless, the finds were intriguing as there is no direct evidence of prehistoric quarrying on the platform or along the Catpund Burn. However, it seems reasonable to assume, from the worked waste and the use of steatite in the construction of the house, that the finds were of local origin.

5.4.1 Description

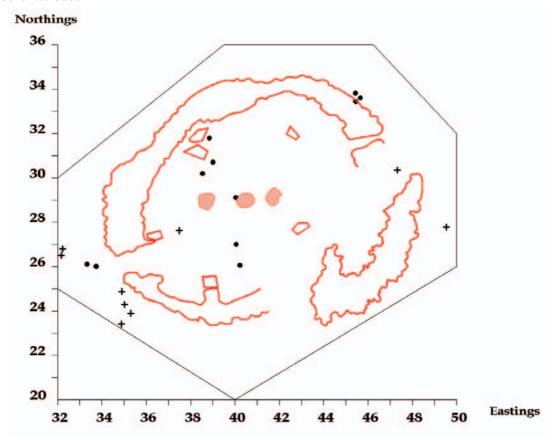
The site yielded 11 fragments of stone vessels, most likely manufactured from local steatite. The breakage surfaces on all the incomplete steatite finds are fairly fresh, indicating that they must have been buried

Illus 35 $\,$ Steatite vessel 110 in situ on the floor of the house. Scales 0.2m and 0.3m

Illus 36 Steatite lamp 102


Illus 37 Steatite perforated weight 109

quite quickly after being discarded. The two complete artefacts are equally worn on all surfaces but it is uncertain whether this is from use or exposure.


The largest piece (no 110) was part of a four-sided, rounded bowl found on the floor of the house, and was the largest object contemporary with its use (Illus 35). The base of the heavy bowl was missing but it is presumed to have been flat; the rim was broad, flat and slightly rounded at the edges. The bowl may not have been much taller than 200mm. Two other steatite vessel fragments (nos 106 and 107) may be part of the same vessel even though they were recovered from later phases of the site.

A finer vessel is represented by other fragments (no 108) from modern levels, although there are no diagnostic pieces of rim or base to identify the type of vessel from which they came. The base of an oval vessel (no 100), retrieved from the topsoil, is similar to a range of material recovered from the quarry (see Sharman unpublished). Another piece (no 102) was a small, complete and possibly unused vessel, identified as a lamp (Illus 36), which was found in the final abandonment layers.

Three pieces of worked waste were used in the construction of the house, and several larger blocks were used as paving in the entrance and in the house

Illus 38 Ceramic base 112

Illus 39 *Distribution of steatite* (•) *and pottery* (+)

wall. These larger boulders bore no obvious tool marks, but the use of steatite for construction is the strongest evidence for the prehistoric exploitation of the outcrop at Catpund.

There are no indications for any specific use of the complete perforated pebble weight (no 109; Illus 37) from the first abandonment. It could have been used as a loom weight or as a counterbalance for a door rather than for fishing, considering the distance and height of the house from the shore.

5.4.2 Discussion

In reviewing the literature from other excavations at prehistoric sites in Shetland, it seems that early steatite vessels are not uncommon even though there are variations in size and shape. A smaller, more rounded vessel than no 100 was found at the Bronze Age site of Tougs (Hedges 1986, 42, fig 9) where it was the only steatite vessel recovered from the site. The excavations at Scord of Brouster produced only three vessel fragments from a small, shallow bowl. It is thought that the radiocarbon date (2440±80 BP) from House 2 at that site gives the earliest recorded use for steatite in Shetland (Whittle *et al* 1986, 72, 74, fig 67–1) and may provide a date for the bowl.

Other steatite vessels are known from the Ness of Gruting (Henshall 1956, 391) and from the late Bronze Age village at Jarlshof, where four small, sub-rectangular bowls and fragments of other vessels were found. The thickness of an illustrated vessel from Jarlshof (Hamilton 1956, fig 11) is comparable to that of the bowl fragment (no 110) from Catpund, although the latter is possibly wider and taller.

During the Bronze Age in Shetland, steatite was exploited for cremation urns and for other vessels (Henshall 1963, 150) but the extent and duration of the prehistoric industry has not been researched in any detail. Urns made from Shetland steatite have been found on Orkney in Bronze Age contexts and sherds of other vessels have been found in domestic contexts at sites of the same period, such as the Calf of Eday, Orkney (Henshall 1963, 150).

In her description of urns, Henshall (1963, 150, 152) suggests that domestic steatite vessels may be late Bronze Age or early Iron Age in date, based largely on the examples from Jarlshof. From more recent excavations, especially those at Scord of Brouster and Tougs, this dating may put them too late in the chronological sequence. It has been suggested that steatite must have been quarried from an early date for the production of Bronze Age burial urns (Hamilton 1963, 31). There is no reason to suggest that the domestic vessels are of a later date and not contemporary with urns. Investigations at Scalloway Broch (Sharples 1998) and Kebister (Owen & Lowe 1999), where steatite objects formed elements of the artefact assemblages, reinforced the view that this material was exploited during prehistory. The analysis of vessel fragments from Scalloway indicated that they were of pre-Norse date (Sharman 1998, 119–20) and there was evidence for the manufacture of steatite vessels at Kebister during the Bronze Age (Sharman 1999, 169-70).

There has been little current synthesis of prehistoric steatite vessels from Shetland, and attempts in 1988 and 1990 (see Turner 1998b) to find early prehistoric quarrying at Catpund were met with failure. Research is needed on the form and dating of early vessels, and in finding the source of the raw material, in order to better understand the nature of the prehistoric exploitation of Shetland's steatite resource, and the exchange and transport systems which were then in place.

5.5 Prehistoric ceramics (Section 5.6.13)

5.5.1 Description

A total of 11 sherds (695g) of prehistoric pottery were recovered from the house. In comparison to other sites, this was a small amount and reinforces the idea that the structure had been thoroughly cleared or levelled after its initial use and prior to its abandonment. The pottery came mainly from the first abandonment phase of the site, its reuse and its final abandonment. A detailed description of the pottery is given in the catalogue (Section 5.6.13).

Table 6 summarizes the numbers and types of sherds found and their main characteristics, although the collection can be described as more or less featureless. The pottery is heavily gritted with fragments of local stone, especially steatite, schist and mica dust. The only rim sherd is a tapering, rounded and narrow fragment. Of the two bases, one is badly crushed and distorted, while the other is flat with a finger runnel between the junction of the base and body (Illus 39). There is not sufficient material to reconstruct a complete vessel profile. The pottery is totally devoid of any decoration and the surface of some of it has been lost through erosion. Most of the sherds, however, were burnished and slipped. In all, the pottery is largely uninformative.

5.5.2 Discussion

At other prehistoric sites in Shetland, the pottery has helped to date the structure or settlement, albeit vaguely, but at Catpund the sherds are largely unhelpful. The negative evidence is equally ambiguous. There is no decorated pottery to suggest a Neolithic, Bronze Age or Iron Age date, the vessel form is lacking and the only rim sherd is not diagnostic. In comparison with other Shetland sites there are similarities in the fabric of the pottery: it contains large inclusions (some of steatite), it is heavily gritted and it is slipped but the similarities end there. The Catpund assemblage lacks the decoration of the

Table 6 The prehistoric ceramics

Catalogue no	No of sherds	Sherd type	Grits				Slip	Burnished
			steatite	mica	schist	quartz		
111	1	Body			X		X	X
122	1	Body	X	X				X
113	2	Body	X	X			X	X
114	1	Body	X	X			X	X
115	1	Rim	X	X				x?
116	1	Body	X	X				X
117	1	Base-side		X	X	X	X	
118	1	Base	X	X		X	x?	X
119	1	Body			X		X	X
120	1	Body		X	X	X	x?	X

pottery from the late Neolithic/Bronze Age site of Ness of Gruting, although there were plain vessels with simple rims there also (Henshall 1956, 381). Vessels from the Bronze Age levels at Jarlshof were plain, straight-sided or barrel-shaped (Hamilton 1956, 29) and the pottery from Scord of Brouster (late Neolithic/Bronze Age) resembled that from the Ness of Gruting, with both plain and decorated globular vessels (Whittle *et al* 1986, 64). All the above sites yielded much higher weights of pottery than the few pieces from Catpund.

Bronze Age Tougs, in contrast, produced only 24 sherds of pottery although these included simple and everted rims, a globular vessel and decorated sherds (Hedges 1986, 19, 42, fig 9). The late Bronze Age/early Iron Age house site at Mavis Grind yielded a large quantity of mainly steatitic wares, with a range of vessel shapes, rims and bases. The assemblage from the Sumburgh houses was similar in that it also contained a wide range of vessel types covering the Bronze and early Iron Ages (Downes & Lamb 2000), but both these assemblages had very different pottery fabrics and types from that from Catpund.

It has been noted that there is still no sequence for Shetland pottery (Whittle et al 1986, 64). Attempts were made at Kebister (Dalland & MacSween 1999, 178–200) and Sumburgh (Downes & Lamb 2000, 60–5) to produce typological sequences but there were problems of large numbers of non-diagnostic and redeposited sherds and the lack of datable material (Downes & Lamb 2000, 60–5). Small assemblages like those from Catpund will always be problematic but a ceramic sequence would be of considerable aid in researching pottery fabrics and types, as well as Shetland's prehistoric settlement history and its technological development.

5.6 Catalogue of artefacts

SF: small find number L: maximum length W: maximum width T: maximum thickness Wt: weight H: height

5.6.1 Quern

1. SF 549, Context 14. Iron-rich, rounded, sandstone boulder: fragment of a non-rotary quern. Slightly flattened by pecking on the base and chipped towards the rounded end on one side. Face originally pecked but now smooth and the surface is hollow. Broken across the worked face. L 310mm; W 345mm; T c.74mm; Wt 11kg+

5.6.2 Small miscellaneous tools

2. SF 707; Context 21. Rounded, triangular-shaped steatite fragment, chipped on one face and on two sides to form a sharp edge. The other side is uneven. Possibly unworked

L 51mm; W 47mm; T 13mm; Wt 36g

3. SF 567; Context 18. Long, thin, stone point of schist.

Chipped and pecked down both sides and broken across the shaft.

L 82mm; W 19mm; T 7mm; Wt 17g

4. SF 704; Context 21. Fragment of highly polished banded-felsite knife, broken across the shaft. The blade is bevelled on one edge but all edges are flattened and contain recent chips. One chip is earlier. Edges may have been sharp but have been worn flat, especially the non-bevelled edge. The tool is covered with fine scratch marks, especially on the bevelled edge.

L 74mm; W 46mm; T 8mm; Wt 50g

5.6.3 Handled tools

5. SF 97; Context 14. Fragment of a pecked, schist-handled tool. Handle has rounded end but the other end is broken across the shaft where it began to widen out. The tool has all-over pecking but is partly smoothed on one area of the shaft.

L 97mm; W 64mm; T 49mm; Wt 384g

6. SF 536; Context 10. Fragment of?schist handle. Broken across the shaft at the point where the handle began to widen out. Handle has a rounded end and was pecked all over, apart from the naturally concave lower surface and a narrow vertical band, approx 20mm wide, on the upper convex face. The tool has been smoothed where the handle starts to widen.

L 109mm; W 65mm; T 41mm; Wt 357g

5.6.4 Ards

7. SF 37; Context 5. Ard point of micaceous sandy schist with both ends facetted. The tool has been pecked all over but has lost much of its surface. The tip is chipped and smoothed on the lower surface but is irregular in appearance and may have been repecked.

L 232mm; W 62mm; T 50mm; Wt 1kg+

8. SF 92; Context 7. Complete ard point with rounded and chipped butt end and tapering facetted tip. Tool has all-over pecking and pecking over earlier chipping on the sides. Upper surface has been smoothed by wear and the tip is slightly chipped. Both surfaces have opposing pecked indentations. The tool is waisted 90mm from the butt end of tool and 180mm from the tip. The tool has been turned around during its use.

L 267mm; W 68mm; T 52mm; Wt approx 1.25kg

9. SF 93; Context 7. Complete and point of schist, with tapering point and chipped butt end. The ard point was chipped to shape then pecked all over but has no notching. The tip is facetted by wear and is worn on both sides and the upper surface. It shows slight wear marks on its lower surface.

L 269mm; W 60mm; T 48mm; Wt 890g

10. SF 95; Context 7. Largely unworked, rounded and tapering bar of quartz-mica schist. It has a naturally rounded butt end. The rock is soft and evidence of surface working on the shaft is uncertain. The tip, although damaged, has been smoothed and facetted, especially on one surface. One edge has lateral scratches.

L 409mm; W 69mm; T 63mm; Wt 3kg

11. SF 592; Context 23. Broad, flat and slightly tapering ard point of schist. Chipped along edges and across butt end. Both surfaces are pecked. Lower surface is smoothed at the facetted tip. Upper surface and sides have very faint wear (smoothing) marks, to about half way up the shaft. There is evidence of repecking on the sides, near tip. The tip is also pecked.

L 288mm; W 90mm; T 33mm; Wt 1kg+

5.6.5 Ard point fragments

12. SF 2; Context 1. Pointed and slightly curved ard point of schist which has been chipped and then pecked to shape on sides. Possibly broken across the butt end. Pecked on lower surface near broken tip. Upper surface and sides are worn smooth with slight wear marks. Upper surface has later accidental areas of pecking.

L 197mm; W 65mm; T 52mm; Wt 800g

13. SF 5; Context 1. Tapered end of small tool of chlorite mica-schist, which has been chipped to shape. The butt end is lost and the tip flattened and rounded by pounding. Tool has all-over pecking.

L 101mm; W 65mm; T 53mm; Wt 465g

14. SF 6; Context 1. Fragment of ard shaft of sandy muscovite, with point missing. Lower surface lost through weathering. Some pecking survives on sides and on upper surface near broken butt end. Upper surface polished smooth with some wear marks.

L 130mm; W 58mm; T 32mm; Wt 303g

15. SF 7; Context 1. Shaft of tool of muscovite schist. Butt and pointed ends shattered away. Tool has all over pecking. Part of upper surface and edges are polished smooth and have faint wear marks.

L 156mm; W 60mm; T 51mm; Wt 655g

16. SF 10; Context 1. Pointed and point of schist, broken across shaft. Pecked all over including tip, apart from an area on the upper surface which is smoothed and includes faint wear marks. There is also a slight pecked hollow towards the broken end on the edge of the smoothed surface.

L 141mm; W 58mm; T 40mm; Wt 390g

17. SF 11; Context 1. Schist tool with butt end missing. Fractured across shaft. Point also lost. Tool was probably chipped to shape and then pecked all over. Has an area of deeper pecking forming a slight hollow on one face.

L 92mm; W 64mm; T 40mm; Wt 343g

18. SF 12; Context 1. Rounded and tip of schist. Upper surface and sides smoothed with wear marks. Tip is facetted and lower surface near end is worn and slightly flaked. Lower surface is pecked. Some pecked areas on both sides and an area of later linear pecking on upper surface.

L 105mm; W 58mm; T 30mm; Wt 220g

19. SF 14; Context 1. Tapering ard point of pink schist with tip chipped away through use and broken across shaft. Lower surface pecked and some surface loss of stone. Tip and sides have repecking. Upper surface very smooth but with no visible wear marks. Broken butt end has some chip marks and some chipping on one side.

L 173mm; W 69mm; T 52mm; Wt 736g

20. SF 19; Context 1. Ard point of pink schist with tip missing. Much surface loss of stone. Pecking present on lower surface. A smoothed surface strip survives on one side with wear marks. Tool is notched 100mm from tip. Tip was bifacially chipped.

L 149mm; W 65mm; T 48mm; Wt 598g

21. SF 22; Context 1. Broad and tip with part of shaft of schist. Upper surface and sides chipped to shape. Lower surface pecked and partly worn smooth. Heavier pecking in some areas and some surface loss at tip. Upper surface facetted from tip to chipped area and worn smooth. This and point has been turned over and used on both surfaces because of patterning of wear marks.

L 120mm; W 62mm; T 33mm; Wt 350g

22. SF 50; Context 7. Tapering ard point of schist, broken across shaft. Evidence of chipping down one end and around butt end. Otherwise, all over pecking but smoothed over on sides and on upper surface, with wear marks. Also repecking on one side. Tip chipped but was facetted. Also has an area of three linear pecked

indentations on upper surface approx 140mm from tip and a linear indentation the same distance from the tip on the lower surface.

L 209mm; W 62mm; T 46mm; Wt 776g

23. SF 53; Context 5. Small schist tool with but end lost. Edges are chipped and one side is pecked over the chip scars. Other side has a broader band of pecking. Surviving end is slightly pointed and worn.

L 108mm; W 63mm; T 41mm; Wt 374g

24. SF 59; Context 5. And tip of schist, narrowed to a facetted tip which has been flaked away. Upper surface lost by weathering. One surviving edge is smooth and has deep wear marks. Lower surface was pecked but has also lost some of its surface.

L 87mm; W 55mm; T 28mm; W 172g

25. SF 62; Context 8. Broad tapering and point of micaceous schist, broken across shaft. Lower surface and sides pecked. Sides also smoothed with wear marks. Facetted tip has been repecked and upper surface chipped. Also repecked down sides.

L 193mm; W 82mm; T 38mm; Wt 704g

26. SF 77; Context 11. End of ard tip of schist. Tip is smoothed with wear marks and is facetted. Sides are rounded and smoothed with wear marks. Base has been lost by flaking.

L 38mm; W 34mm; T 18mm; Wt 26g

27. SF 82; Context 13. Tapering shaft of sandy schist, broken at butt end with all-over pecking on top of earlier pecking near tip. Tip missing but slight wear and smoothing on chipped area. Some chip marks around broken edge of butt end.

L 188mm; W 69mm; T 55mm; Wt 1kg

28. SF 83; Context 8. Mica-schist tool fragment. Pecked down both edges and on surviving face in a discrete area. Both ends of tool are shattered by hammering. Originally a rounded pebble.

L 122mm; W 63mm; T 30mm; Wt 395g

29. SF 87; Context 8. Tapering and point of schist. Chipped along one edge and at tip. Has all-over pecking and tip formed by chipping. No wear marks. Upper surface has irregular pecked indentation approx 100mm from tip.

L 130mm; W 69mm; T 51mm; Wt 586g

30. SF 89c; Context 8. Pointed and tip of schist, smoothed, polished and facetted. Broken along shaft. Pecked on body, sides and surfaces around broken end. Some slight wear marks on sides and upper surface. End slightly pecked with wear.

L 143mm; W 53mm; T 46mm; W
t 388g

31. SF 500; Context 7. Fragmentary tapering and curved ard point of schist. Heavily worn with wear marks and facetted point. Repecked on both surfaces.

L 126mm; W 46mm; T 33mm; Wt 235g

32. SF 502; Context 7/10. Part of a long tapering tool of schist which has lost much of its surface. The butt end is chipped away and the pointed end is chipped. Some pecking on both sides.

L 176mm; W 63mm; T 345mm; Wt 534g

33. SF 525; Context 7. Broad, thin rounded tip of mica-schist. Upper surface smooth with faint wear marks. Lower surface partly smooth with wear marks on top of earlier pecking. Sides of tip were chipped before being smoothed, but also evidence of later flaking on sides. End of tip is rounded rather than facetted.

L 73mm; W 75mm; T 21mm; Wt 151g

34. SF 534; Context 10. Tapering tool of mildly metamorphosed flagstone. Has surface loss on one face. Butt end shattered away and point chipped but has loss of surface. Tool had all-over pecking. One linear pecked hollow survives on one face approx 20mm by 7mm and 80mm from point.

L 121mm; W 73mm; T 52mm; Wt 374g

35. SF 540; Context 15. Irregular ard point of mica-schist, shaped as a handle by chipping along one edge, face and end. Broken transversely. Pecked down both sides and on one face. Tool tip worn smooth on pecked surface and worn to an angle and facetted. An irregular shaped ard point with no wear marks other than at tip.

L 178mm; W 75mm; T 52mm; Wt 620g

36. SF 541; Context 15. Narrow ard tip of schist, broken at shaft. Upper surface and sides smoothed with wear marks. Lower surface heavily pecked. Tip facetted by chipping through use. Flaked areas present on both sides and on upper worn surface. Some wear marks on pecked lower surface.

L 87mm; W 54mm; T 36mm; Wt 202g

37. SF 546; Context 15. Pointed schistose tool with tip missing and butt end damaged. Tool roughly chipped to shape and then finished with fine peck marks on sides and faces.

L 155mm; W 61mm; T 38mm; Wt 504g

38. SF 550; Context 14. Ard point of schist, broken bifacially across shaft near butt end. Tool is pecked all over, possibly over earlier chipping on sides, and worn smooth on one side with wear marks. Worn extensively on upper surface, with scratches. Tip of ard has been lost with surface loss from stone. Because of wear pattern, ard may have been tilted in its housing.

L 186mm; W 63mm; T 39mm; Wt 525g

39. SF 551; Context 14. Possible ard with point lost. Schistose rock, tapering and rounded. Some early rough hammering on body of tool, then about 90% overall pecking on faces and sides. Wear marks and polish around broken tip, especially on one face and side where there is a slight indentation 100mm from tip. Tip has been bifacially hammered. Also some light secondary pecking which has broken wear on the other side. Butt end broken off. May have been used as a hammerstone after losing its tip.

L 194mm; W 74mm; T 58mm; Wt 1.1kg

 ${\bf 40}.$ SF 552; Context 14. Garnetiferous schist tool shaft. Pecked roughly on body. Both sides smoothed.

L 51mm; W 57mm; T 45mm; Wt 217g

41. SF 562; Context 15. Schistose tool fragment with tip lost. Has bifacial chipping and butt end possibly lost. Both faces of this thin, oval tool have been pecked and there is a pecked indentation on each surface, 70mm from butt end. Indentations lie across the width of the tool. Only one surface is polished and has wear marks. Some pecking is subsequent to polishing, suggesting later damage or some reuse of tool. Might have been an ard.

L 110mm; W 70mm; T 37mm; Wt 410g

42. SF 564; Context 15. Tapering ard point of schist with tip missing. Chipped on upper surface and butt end lost. Has all over pecking except for an area of wear on upper surface with faint wear marks. Could have been repecked around tip.

L 151mm; W 66mm; T 45mm; Wt 501g

43. SF 569; Context 18. Micaceous sandstone bar, chipped down both sides and across butt end. Some chipping at other end. Pecked on sides and on one face. Other face largely unworked. Polished towards missing tip of pecked face.

L 168mm; W 69mm; T 43mm; Wt 895g

44. SF 570; Context 18. Broad ard point of schist. Chipped on lower surface and on one side. Has all over pecking and two areas of linear pecking on upper surface in centre and 140mm from tip. Point is facetted and worn smooth. Area of wear extends up sides onto upper surface, with faint wear marks. Has been repecked around tip on sides and lower surface.

L 196mm; W 84mm; T 48mm; Wt approx 1.2kg

45. SF 572; Context 15. Ard fragment of schist with tip bifacially chipped away. Tool pecked all over but with area

of smooth wear on upper surface with marks. Has been repecked on sides. Also has a pecked area around shaft from sides across upper surface to form a notch about 100mm from tip.

L 141mm; W 58mm; T 48mm; Wt 533g

46. SF 578; Context 15. Quartz-mica schist tool tip. Chipped to shape and roughly pecked all over. Tip has later bifacial chipping.

L 118mm; W 64mm; T 44mm; Wt 453g

47. SF 581; Context 15. Fragmentary weathered schist tool with both ends lost. Partly chipped on one side towards butt end. Heavily pecked on one face and on both edges. Slight indentation on pecked face. Other face has lost parts of surface but was polished smooth with fine wear marks.

L 130mm; W 66mm; T 41mm; Wt 448g

48. SF 582; Context 15. Fragmentary schist tool with shattered tip and butt end lost. Slightly rounded with all-over pecking around most of shaft. No other wear except a possible pecked indentation, 120mm from tip.

L 169mm; W 66mm; T 53mm; Wt 715g

49. SF 585; Context 18. Tool tip of quartz-mica schist. Chipped to shape down one edge. Other edge and one face has all-over pecking. Some other chipping on pecked face including a single indentation. Tip has later bifacial chipping.

L 99mm; W 81mm; T 53mm; Wt 581g

50. SF 590; Context 21. Pointed ard tip of schist. Sides rounded and smoothed with wear marks. Tip facetted upwards. Base of tip is partly smoothed with wear marks. Tool was later pecked on lower surface to tip end. Upper surface pecked at tip and partly down one side. End of tip has been gently flaked.

L 55mm; W 41mm; T 31mm; Wt 85g

51. SF 596; Context 21. Quartz-mica schist bar, roughly shaped by chipping on edges and faces and finished by overall pecking which is heavier on sides. Tip lost through bifacial shattering. Butt end recently lost.

L 184mm; W 70mm; T 45mm; Wt 676g

52. SF 597; Context 23. Garnetiferous schist with quartz and mica. Large grained stone with surface loss. Pointed end broken away and butt end lost. Shaft pecked all over and one side partly polished.

L 92mm; W 61mm; T 50mm

53. SF 702; Context 23. Rounded edged tool of schist with butt end missing. Pointed end has been chipped and has some surface loss of stone. One face has overall pecking, partly on edges and on other face. Pecking masked on this face by smoothing with wear marks.

L 145mm; W 77mm; T 48mm; Wt 714g

54. SF 705; Context 23. Tapering tool tip of iron rich sandstone, possibly an ard point. Some surface loss of stone but edges and tip are pecked. Tip is a blunted, broad point. Both surfaces smooth with random wear marks.

L 69mm; W 53mm; T 28mm; Wt 120g

55. SF 706; Context 8. Quartz-mica schist bar, tapering to one end which is chipped. Butt end may be lost because of surface loss of stone. Tool pecked all over and has central pecked indentation on both faces, 130mm from tip. Tool is slightly notched by pecking on sides at this point. Possibly a reused ard point.

L 182mm; W 69mm; T 53mm; Wt 1kg

56. SF 717; Context 26. Tapering shaft of schist with butt and pointed ends missing. Lower surface and sides near butt end pecked. Upper surface chipped near butt end and otherwise worn smooth with wear marks.

L 130mm; W 65mm; T 47mm; Wt 580g

57. SF 720; Context 35. Butt end and shaft of ard of schist, chipped to shape. At break near pointed end, some chipping at edges. An area of the upper surface is smoothed, with wear marks. Lower surface near break is pecked.

L 216mm; W 58mm; T 47mm; Wt 512g

58. SF 721; Context 15. Tool tip of schist. The chipped and pecked body is broken across the shaft. Tip pointed by chipping but one edge worn smooth.

L 118mm; W 70mm; T 50mm; Wt 575g

5.6.6 Chipped bars

59. SF 85; Context 7. Tool shaft of schist, originally chipped to shape. Some pecking on one edge.

L 134mm; W 91mm; T 48mm; Wt 812g

60. SF 86; Context 7. Shaft of tool of schist with both ends lost. Tool chipped to shape and then pecked mainly on edges. Tool has two pecked hollows on each surface in the centre. Three of the hollows are linear. Tool has later chips down one side.

L 145mm; W 83mm; T 57mm; Wt 1kg+

61. SF 94; Context 7. Butt end of tool of schist, chipped to shape. Sides and faces partly pecked. Pointed end broken off. Tool has linear pecked indentation in centre of one face

L 159mm; W 84mm; T 51mm; Wt 1kg

62. SF 96; Context 14. Shaft of samitic schist, with both ends missing. Some chipping around butt end but other end lost by hammering. One side chipped but tool has overall pecking.

L 120mm; W 76mm; T 55mm; Wt 645g

63. SF 510; Context 7. Schist tool with surface loss of stone. Edges have been worked by chipping, then pecked. Tool has retained the butt end but other end lost by shattering. Lower surface lost but upper surface partly smoothed besides shattered end, at both edges.

L 143mm; W 67mm; T 48mm; Wt 661g

64. SF 511; Context 7. Heavy schist pebble with butt end missing. Narrow end bifacially chipped. Few peck marks on body, except one face which has pecked hollow and other linear peck marks from centre to narrow end.

L 129mm; W 83mm; T 52mm; Wt 935g

65. SF 539; Context 15. Mica-schist rounded hand tool. Body has all over pecking. Possibly used as hammer at both ends but pecked over damaged area.

L 138mm; W 80mm; T 56mm; Wt 1kg+

66. SF 565; Context 15. Fragmentary tool with both ends lost, chipped heavily on one face and possibly on one edge. Edges pecked but tool rechipped towards tip. Possible indentations on both surfaces.

L 137mm; W 79mm; T 46mm; Wt 790g

67. SF 571; Context 18. Rectangular flattened tool of micaceous pink schist. Tool chipped along edges and butt end missing. Other end broken but bifacially chipped. Tool is waisted on one edge although this could be accidental. Has later pecking on both edges.

L 156mm; W 88mm; T 37mm; Wt 716g

68. SF 576; Context 15. Shaft of tool of schist with both ends lost. Tool chipped on one surface and down edges. Pecked on both edges and one face, including four pecked hollows.

L 113mm; W 71mm; T 51mm; Wt 675g

69. SF 577; Context 15. Quartz-schistose rock fragment: tool with both ends lost. Chipped down both edges and possibly across one face. Pecked down one side only and has shallow, pecked indentation on flatter surface.

L 140mm; W 84mm; T 47mm; Wt 945g

70. SF 593; Context 23. Shaft and end of schist tool. Tool had been chipped along all edges and then pecked. Surviving end bifacially chipped and possibly pecked on one surface. One face has random peck marks and other face has pecked hollow.

L 111mm; W 78mm; T 54mm; Wt 708g

5.6.7 Pecked bars

71. SF 8; Context 1. Pointed end of tool of sandy schist, broken across shaft and rounded by shattering. One edge shaped by chipping but much surface loss of stone. Some peck marks visible on both edges and faces.

L 147mm; W 79mm; T 55mm; Wt 726g

72. SF 24; Context 1. Rounded bar of schist which has all-over pecking. Both ends lost but with signs of chipping. Both faces with linear areas and hollows of pecking.

L 166mm; W 72mm; T 46mm; Wt 139g

73. SF 598; Context 24. Schistose pebble with one end lost. Other end curved to shape by pounding and/or grinding. Large chip fracture on one face and chip marks down one side, with irregular and intermittent pecking along both sides and on faces. One face has slight linear indentations running across body of tool below its middle. Other face has three patches of pecked and linear indentations. Some smoothing on both sides on one edge.

L 180mm; W 72mm; T 55mm; Wt 1kg+

5.6.8 Thin bars

74. SF 66; Context 8. Flat blade of schist. Chipped on one side, along one edge and at ends. One end rounded and worn smooth with striation marks on one face. Some surface loss of stone.

L 214mm; W 88mm; T 29mm; Wt 589g

75. SF 79; Context 7. Flat, linear tool of schist. Chipped bifacially along one edge and at wedge-shaped worked end where it is also polished. Other edge pecked along a natural fracture. Butt end has pecked edges to form handle although the end is missing.

L 182mm; W 66mm; T 23mm; Wt 333g

76. SF 89a; Context 8. Mica-schist spatulate tool which has been chipped all over into shape. Broad end slightly worn by rubbing.

L 167mm; W 70mm; T 31mm; Wt 341g

77. SF 89b; Context 8. Flat tool of mica-schist, chipped to shape at ends and sides. Broad end worn smooth on one side. Wear is angled and visible as curved narrow band to halfway down one edge. Later pecking on this edge. Surface loss of stone may be extensive accounting for shape of smoothed and worn area.

L 146mm; W 66mm; T 24mm; W
t 337g

78. SF 515; Context 7. Flattened, tapering bar of schist with early chipping on sides and by tip. Tip broken off and butt end may also be lost. Unfinished ard rough-out?

L 234mm; W 93mm; T 28mm; Wt 858g

79. SF 527; Context 10. Flat, linear tool of schist. Roughly chipped and pecked to shape on edges, on one face and partly on the other. Ends of tool narrowed and polished on opposing faces. Both ends have wear marks. Edges of ends are slightly rounded.

L 221mm; W 73mm; T 32mm; Wt 663g

80. SF 543; Context 15. Fragmentary thin tool of mica-schist. Lost part of one face and transversely damaged. Neatly chipped to shape along edges, after primary rough chipping. Only lower fragmentary surface worn smooth, masking the chipping at the edge and tip. Tip naturally upturned.

L 133mm; W 74mm; T 21mm; Wt 292g

81. SF 568; Context 18. Tool of pink schist, badly weathered with some surface loss. Edges chipped and pointed end chipped to shape. Broad end may have been used as a polisher.

L 174mm; W 76mm; T 26mm; Wt 442g

82. SF 722; Context 23. Schistose tool tip, broad and flat and broken across shaft. Chipped along both edges and on

one face. Mattock tip with edges blunted but no significant wear marks.

L 132mm; W 90mm; T 24mm; Wt 336g

5.6.9 Irregular flaked bars

83. SF 17; Context 1. Shaft of tool of schist, originally perhaps an ard point, with a rounded butt end. Tool had been chipped to shape then pecked all over. Pointed end may have been an ard tip, with only two small worn surface areas surviving. Rest of tip has been chipped and pecked. Both faces have two pecked hollows. Two hollows have linear striations from the side.

L 175mm; W 64mm; T 47mm; Wt 850g

84. SF 25; Context 5. Fragment of stone tool of chlorite schist. Has a rounded butt end but point is lost. Pecked down one side and possibly chipped down other. Much surface loss of stone on faces and butt end.

L 118mm; W 76mm; T 44mm; Wt 585g

85. SF 32; Context 5. Schist tool with lost point. Originally pecked to shape then had overall pecking. Large chipping around narrow end and less pecking. Could have been an ard point. Some surface loss from stone.

L 142mm; W 67mm; T 47mm; Wt 690g

86. SF 71; Context 7. Mica-schist tool with butt end missing. Pointed end chipped to shape, mainly from one direction. Butt end also chipped. Body of tool had all over pecking, prior to chipping. Has two opposing pecked indentations on shaft at sides, notched approx 80mm from the surviving end. Might have been an ard point, later used as a hammerstone.

L 127mm; W 65mm; T 52mm; Wt 601g

87. SF 545; Context 15. Schistose tool chipped along one edge and at narrow end. Pecked down one side. Possibly unfinished.

L 182mm; W 54mm; T 62mm; Wt approx 1.2kg

88. SF 563; Context 15. Schistose? rock fragment. Pecked down one side and tip chipped from three sides. Shaft broken. L 121mm; W 60mm; T 35mm; Wt 354g

89. SF 575; Context 18. Mildly metamorphosed flagstone. Crude tool chipped down both edges and at tip. May have lost butt end, but tool surface prone to weathering.

L 124mm; W 53mm; T 30mm; Wt 314g

5.6.10 Small hand tools

90. SF 20; Context 1. Small tapering tool of phyllitic schist with much surface loss of stone. Pointed end lost and butt end partly chipped. Some pecking on sides.

L 96mm; W 51mm; T 34mm; Wt 233g

91. SF 72; Context 11. Rounded but very worn tool of schistose rock. Evidence of some chipping on body, edges and at both ends. May have been pecked all over. Pointed end chipped to shape but much post-deposition weathering. Some surface loss of stone.

L 130mm; W 69mm; T 59mm; Wt 608g

92. SF 591; Context 21. Mildly metamorphosed flagstone with surface loss from stone. Small hand tool, chipped down edges and at ends. Much of surface pecking is lost and survives only on one edge. One end chipped from one direction; other end shattered.

L 130mm; W 72mm; T 39mm; Wt 450g

5.6.11 Miscellaneous pebbles

93. SF 21; Context 1. Felsite? pebble, facetted along shaft

and at ends. Has been used as a rubber as one end and parts of shaft are smooth. Other end may have been pecked.

L 84mm; W 42mm; T 35mm; Wt 230g

94. SF 47; Context 5. Rounded triangular tool of schist. Edges and both ends chipped and later pecked. Random pecking on surface with two pecked hollows. Other face has one large pecked hollow.

L 168mm; W 89mm; T 49mm; Wt 1kg+

95. SF 99; Context 7. Schist pebble, finely pounded and shattered at both ends. Some facetting of ends with use. L 66mm; W 31mm; T 27mm; Wt 101g

96. SF 547; Context 15. Smooth schistose pebble. Both ends chipped on opposite surfaces. Flatter face has one small area of chipping, secondary damage to an area with some slight polish.

L 222mm; W 83mm; T 45mm; Wt approx 1.2kg

97. SF 558; Context 15. Small rounded pebble of schistose rock with slight indentation at narrower end. One edge partly pecked; other edge has a linear and random peck marks. Slight surface pecking with a linear mark on one face. Other face polished.

L 106mm; W 50mm; T 29mm; Wt 222g

98. SF 574; Context 18. Rounded, smoothed pebble of quartz-mica schist. Butt end damaged and rounded end chipped and pecked. Both faces have two pecked indentations, approx 25mm by 20mm. Tool may have been pecked down one edge and possibly partly smoothed with wear.

L 117mm; W 84mm; T 54mm; Wt 770g

99. SF 711; Context 21. Rounded pebble of degraded schist. Chipped on one side and with loss of surface on other. One surface polished with faint wear marks.

L 67mm; W 59mm; T 15mm; Wt 94g

5.6.12 Steatite

100. SF 16; Context 1. Base of oval vessel, the exterior more worn than the interior. Blunt pointed tool, 3mm wide, had been used to shape the vessel by pecking and with short strokes.

L 297mm; W 145mm (internal); T 23–40mm; Wt 5.09 kg **101**. SF 40; Context 7. Complete but quite worn vessel, almost four-sided at the rim. Gradually rounds off to an oval base and is bevelled just 14mm above this. Top has been worked into shallow oval hollow, 15–30mm deep, and the vessel shows faint signs of pecking all over.

L 125mm; W 113mm; H 90mm; Wt 1.39kg

102. SF 33; Context 6. Worn fragment of waste, worked on one side with short, random grooves and pecks approx 3mm wide.

103. SF 60; Context 8.

104. SF 61; Context 8.

105. SF 63; Context 8. Three pieces of worked waste, flat, worked by a blunt pointed tool, 3–4mm wide; a little worn. Tooling was roughly in one direction in short (12–42mm) strokes.

T 10-49mm; total Wt of SF 33, 60, 61 & 63 11.75kg

106. SF 81; Context 11. Slightly flattened, rounded rim fragment.

L 42mm; W 83mm; T 24mm; Wt 140g

107. SF 533; Context 7. Broad, flattened, rounded rim fragment. Some mica present on surface and in section. Interior surface smoothed. Exterior rough with iron-staining and carbon deposits.

L 74mm; W 50mm; T 23mm; Wt 146g

108. SF 538; Context 10. Five fragments, four very degraded and possibly burnt. The largest of these is smoothed on one surface and is approx 15mm thick. Other fragment tooled with horizontal grooves on smoothed

outer surface, below a rounded rim. Possibly just a tooled piece and not a vessel fragment.

L 20mm; W 41mm; T 15mm; total Wt 45g

109. SF 584; Context 21. Worn, irregularly-shaped pebble weight with signs of tooling by narrow (2mm-wide) blunt point as well as shaving. Pierced off-centre by gouging from both sides to create crude sub-oval hole.

L 135mm; W 105mm; T 28–56mm; Hole: minimum L 19mm & W 7mm; Wt 80g

110. SF 595; Context 22. Vessel fragment, part of rounded, four-sided jar. Rim survives but base missing. Rim flattened, broad and rounded at the edges. Vessel has some tooling marks on the inside and is smoothed, with carbon deposits, towards the base. Exterior is rough with some iron-staining and carbon deposits.

L 193mm; W 215mm; T 20–25mm; Wt approx 2.25kg

5.6.13 Ceramics

111. SF 504; Context 7/10. Heavy body sherd from near base of vessel, with mica-dusted slip and schist inclusions. Oxidised and slightly burnished on outer surface. Blackened with food debris on inner surface. Coil-built. Munsell: hue 2.5YR 6/4 light reddish brown

112. SF 537; Context 7. Body sherd, coil-built and heavily gritted with steatite and mica throughout. Possibly not slipped but surfaces burnished with wear.

Munsell: hue 10YR 6/2 light brownish grey to 7/2 light grey 113. SF 542; Context 14. Two small body sherds with degraded steatite inclusions and mica dust. Slipped and burnished on exterior surface.

Munsell: hue 10YR 5/2 greyish brown

114. SF 553; Context 15. Body sherd with inclusions of steatite; mica dusted. Coil-built with slipped and burnished outer surface.

Munsell: hue 10YR 5/2 greyish brown to 4/2 dark greyish brown

115. SF 556; Context 15. Rim sherd with mica dust. Coil-built with steatite inclusions. Outer and inner surfaces smoothed with food debris on inner surface. Rim narrows to rounded tip.

Munsell: hue $10 \mathrm{YR} \ \bar{7}/4$ very pale brown to 6/4 light yellowish brown

116. SF 561; Context 15. Body sherd, coil-built with steatite inclusions and mica dust. Outer surface burnished. Munsell: hue 10YR 6/2 light brownish grey

117. SF 573; Context 15. Reconstructed flat base and part of one side of a coil-built earthenware vessel. Inclusions of quartz, mica and schist in body sherds. Probably slipped on both surfaces. Patch of smoothing on surface of base edge and on inside. Possible remains of food debris on inside. Munsell: hue 7.5YR 6/4 light brown

118. Remains of another vessel base of reduced ware, badly crushed and distorted, found with 117. Very micaceous with some quartz and steatite inclusions. Burnished, if not slipped, to a hard surface.

Munsell: hue 2.5YR 2/4 or 5 dark reddish brown

119. SF 580; Context 15. Small body sherd with schist inclusions. Mica dust on burnished and slipped outer surface. Inner surface lost. Sherd concave from below vessel rim or shoulder.

Munsell: hue 10YR 6/2 light brownish grey to 5/2 greyish brown

120. SF 700; Context 14. Body sherd with high percentage of schist inclusions. Also has mica dust throughout and some quartz grains. Outer surface lost. Inner surface smoothed and possibly slipped, with some carbon deposits. Munsell: hue 7.5YR 5/2 brown

5.6.14 Quartz artefacts

All SF 513 from Context 7

C1. Unretouched bipolar flake, fragmented.

L 42mm; W 46mm; T 15mm

C2. Unretouched bipolar flake.

L 31mm; W45mm; T 10mm

C3. Unretouched bipolar flake.

L 47mm; W 33mm; T 10mm

C4. Unretouched bipolar flake.

L 47mm; W 25mm; T 8mm

C5. Unretouched bipolar flake. L 30mm; W 27mm; T 9mm

C6. Unretouched bipolar flake.

L 37mm; W 37mm; T 10mm

C7. Unretouched bipolar flake.

L 38mm; W 25mm; T 14mm

C8. Unretouched bipolar flake.

L 30mm; W 34mm; T 8mm **C9**. Unretouched bipolar flake.

L 40mm; W 26mm; T 12mm

C10. Unretouched bipolar flake.

L 37mm; W 19mm; T 8mm

C11. Unretouched bipolar flake.

L 31mm; W 27mm; T 8mm

C12. Unretouched bipolar flake.

L 32mm; W 29mm; T 10mm

C13. Unretouched bipolar flake.

L 22mm; W 34mm; T 8mm

C14. Unretouched bipolar flake.

L 32mm; W 22mm; T 5mm

C15. Unretouched bipolar flake, proximal end.

L 26mm; W 19mm; T 8mm

C16. Unretouched bipolar flake.

L 41mm; W 34mm; T 16mm

 ${f C17}.$ Unretouched indeterminate flake, possibly platform flake.

L 22mm; W 22mm; T 6mm

C18. Bipolar core.

L 40mm; W 29mm; T 15mm

C19. Bipolar core.

L 37mm; W 31mm; T 16mm

C20. Bipolar core.

L 42mm; W 34mm; T 19mm

C21. Bipolar core, one corner broken off.

L 34mm; W 25mm; T 13mm

C22. Bipolar core, one lateral side broken off.

L 36mm; W 20mm; T 12mm

C23. Unretouched bipolar flake.

L 41mm; W 29mm; T 14mm

C24. Short end-scraper on bipolar flake.

L 43mm; W 35mm; T 14mm

C25. Double end-scraper on bipolar flake, most of one working edge broken off. Distinct notch in either side – possibly associated with hafting.

L 38mm; W 32mm; T 13mm

C26. Short end-scraper on bipolar flake. Both lateral sides blunted by steep retouch.

L 44mm; W 39mm; T 18mm

C27. Short end-scraper on bipolar flake.

L 21mm; W 18mm; \bar{T} 8mm

C28. Short end-scraper on bipolar flake, the central part of the working-edge broken off.

L 37mm; W 32mm; T 17mm

C29. Short end-scraper on bipolar flake, most of the working edge broken off but a stretch of scraper edge clearly visible at one corner.

L 37mm; W 31mm; T 11mm

C30. Short end-scraper on bipolar flake, one corner of the

working edge broken off. L 30mm; W 16mm; T 8mm C31. Borer on bipolar flake, outermost tip broken off. Notches or retouch clearly visible on either lateral side near the break. L 42mm; W 21mm; T 9mm