Froc Soc Antiq Scot, 120. (1994)

FICHE 2: CONTENTS

DANIEL A JOHNSTON
--Carronbridge, Dumfries and Gailoway: the excavation of Bronze Age cremations, Iron Age settlements and a Roman camp A.t - D6

IAN ARMIT, TREVOR COWIE \& IAN RALSTON

MUNNE HALLEN
Excavation of pits containing
Grooved Ware at Hillend, Clydesdale
District, Strathclyde Region E1-E14

Bone and antler artefacts from Foshigarry and Bac Mhic Connain:
two Iron Age sites on North Uist,
Western Isles
F1-F5

CONTENTS

The penannular brooch, sword
and sickle

Copper alloy and iron objects

The glass

The coarse stone

The vitreous waste

Radiocarbon dates

O Owen $\&$ R Welander 2: C7

B A Ford
2: C8-C9

J Henderson
2:C10-C11

A Clarke
2:C1?

E Slater
2: C13-D1

M Dalland
2: D2-D6

The charred plant remains S Boardman

Appendix I: Treatment of the samples from Camonbridge:
Bulk samples were processed using a standard water separation niachino (Kenward et al 1980). The light itactions (flots) were collected in sioves with mesh sizes of 1 mm and 300 microns, and the heavy fractions (retents) in a 1 mm mesh.

The 1 mm flots were soted in completion, by eye or using a low power light microscope. The quantity of remains did not wamant the sorting of the 300 micron flots. Smaller 1 mm retents were tota'iy soted, but many of the retents were very large and stony; in these cases a fraction of $1 / 8,1 / 4$ or $1 / 2$ was picked (depending on retent size and richness).

In gencral, there were few macroplant remains in the retents. Most were unidentifiable fragments, or grains of cereal species already seen in the fiot: in the case of partially sorted retents, however, it is possible tinat cortain irre macroplant components were missed.

Species represented

Key to tables 1-4
All figures refer to seecis fruits, nuts and nutlets, unloss otherwise stated. $F=$ fragments (not Included in the calculation of sample totals).

Sample descriptions and becations:

B1/2/3/4 - Building 1, 2, 3, 4; CREM - cremation: DCH - -'"ch; ENT entrance area (enclosure 4); FILL - general fill or layer; FURN - fumace; GULL gulley; HTH - hearth; ?NAT - probable natural; NTERM - fill of Noth ferminus ditch; PD - ?enannular ditch; Pit - post-hole: PTt 1/2/3-Pit 1, 2. 3: PP - post pipe: PT - palisade trench; RG - ring groove; SCP - scoop; SFl/2/3 - Surken feature 1, 2, 3; STERM - fill of South terminus ditch.

TABLE 1 , Bronze Age creawtions and burials

F'NO LoCATION	3006 Burial	3016 Cist 2	2004 Crem	2003 Crem
Species				
Hordeum (grain) hull cf symmetric	1			
Avena sp			2	2
Gramineae undiff.		1		
Plantago lanceolata L.			1	
Rosaceae undiff.			1	
Indet, seeds	1		2	
Indet, tubers		12		
Quantifiable fragments Vol of soil (litres)	17	13	6	74

TABLE 2A. Enclosure A: Inner ditch E entrance area

$\begin{aligned} & \text { F NO } \\ & \text { LOCATION } \\ & \text { F TYPE } \end{aligned}$	$\begin{gathered} 019 \\ \text { NTERM } \\ \text { DCH } \end{gathered}$	$\begin{gathered} 357 \\ \text { NTERM } \\ \text { DCH } \end{gathered}$	$\begin{gathered} 173 \\ \text { NTERM } \\ \text { DCH } \end{gathered}$	$\begin{gathered} 206 \\ \text { STERM } \\ \text { DCH } \end{gathered}$	$\begin{gathered} 167 \\ \text { STRRM } \\ \text { DCH } \end{gathered}$	$\begin{aligned} & 022 \\ & \frac{\mathrm{ENT}}{\mathrm{HER}} \end{aligned}$	036 ENT GULL	$\begin{aligned} & 132 \\ & \mathrm{ENT} \\ & \mathrm{PH} \end{aligned}$	223 ENT PH
Species									
Hordeum (grain) hulled asymmetric	6	$6+1 F$	1	1		3			
hulled symnetric	1	2	1	3					
hulled of asymmetric			1	1					
hulled	$2+1 F$	5		4		1	1		
+ syn. H. vuigare L.									
H. indet asymmetric	1			2			1		
indet symmetric	3								
indet grains	7+1F	4	1	4		1	1		
cf H so. (grain)	1								
Avena so.		1 F			3		1	1	1
cf A so.							1		
Cerealia indet		3			2				
Atriplex so.					1				
Chenopodium albua type							2		
Chenopodium/Atriplex			$1 F$		2				
Galium aoarine L						2			
Polygonum persicaria/apathifolium			1			8	1		
P so.							3		
Polygonaceae/Cyperaceae					2				
Runex of acetosella					1				
Viola so.			1						
Indet									
Quantifiable fragments Vol of soil (litres		20 4	$\begin{array}{r} 6 \\ 12 \end{array}$	$\begin{aligned} & 15 \\ & 28 \end{aligned}$	10	$\begin{aligned} & 15 \\ & 12 \end{aligned}$	11 10	1 12	3 14

TABLE 2B Enclosure A: Building 1

$\begin{aligned} & \text { F NO } \\ & \text { LOCATION } \\ & \text { F TYPE } \end{aligned}$	$\begin{aligned} & 067 \\ & \text { B1 } \\ & \text { RG } \end{aligned}$	502 $\mathrm{B1}$ RG	178 $\mathrm{B1}$ PH	$\begin{aligned} & 243 \\ & \text { B1 } \\ & \text { GUEL } \end{aligned}$	589 B1 GUL.	561 BI SCP	547 81 $2 H$	503 B1 PH	590 B P 1 P	594 B? 1 PH
Species								.		
```Hordeum (grain) hulled asymmetric*```				1	5			1	1	1
hulled symmetric					5					
hulled of symmetric										
hulled			1 F	$2+1 F$	10					
* syn H vulgare L										
H indet grains			1	1	2				1	1+1F
Avena so.		1	1				2			
Cerealia indet	1		1	$3+2 \mathrm{~F}$			$\pm$		1	1
Chenopodium album type						1				
Chenopodium/Atriplex					1					
Leontodon autumnalis L										1
Plantago lanceolata L			1						1	
Polygonum persicaria/lapathifolium	1							3		1
P so.									1	
Indet				15					1	3+1F
Quantifiable fragments Vol of soil (Iitres)	$\begin{gathered} 2 \\ 14.5 \end{gathered}$	$1 \begin{array}{r}1 \\ 10\end{array}$	4 17	7 8	23 10	1	2	$4{ }_{12}$	6	8 3

TABLE 2C Enclosure A: Buildinge 2, 3, $4 \& 6$

NO   LOCATION   F TYPE	$\begin{aligned} & 051 \\ & \text { B2 } \\ & \text { RG } \end{aligned}$	O50 B3 RG	$\begin{aligned} & 344 \\ & \mathrm{B4} \\ & \mathrm{PH} \end{aligned}$	$\begin{aligned} & 348 \\ & \mathrm{BE} \\ & \mathrm{PD} \end{aligned}$	$\begin{aligned} & 064 \\ & B 6 \\ & \text { PD } \end{aligned}$	$\begin{aligned} & 066 \\ & \text { B6 } \\ & \text { PD } \end{aligned}$	$\begin{aligned} & 146 \\ & \text { B6 } \\ & \text { RG } \end{aligned}$	$\begin{aligned} & 156 \\ & 85 \\ & \therefore 3 \end{aligned}$	$\begin{aligned} & 353 \\ & B 6 \\ & R G \end{aligned}$	052 ?B6 HTH	110 $?$ ? 66 HTH
Species											
```Hordeum (grain) hulled asymmetric*```		1					1			1	
hulled							1				
* syn H vulgare L											
cf hulled	2										
indet asymmetric				3	1		4	2			
indet symmetric		2		1				2			
indet grains	4	2		1		1	6	10	:	1	
cf H so.											
Triticum/Hordeum		,		1							
Avena so.	1	1	4				3	4	1	2	3
cf A so.				1							
Cerealia indet	1							14	$1+1 F$		
Chenopodium/Atriplex \quad 年											
Galeopsis tetrahit L	1				1				4+2F		
Gallium aparine L											
G so.								1			
Polygonum persicaria/lapathifolium										2	
P so.				1	1		1				
Indet								1	4		1
Quantifiable fragments Vol of soil (litres)	$\begin{array}{r} 9 \\ 11 \end{array}$	$\begin{array}{r} 6 \\ 17 \end{array}$	$\begin{array}{r}4 \\ 10 \\ \hline\end{array}$	8 5	3 13	$\begin{gathered} 1 \\ 10.5 \end{gathered}$	17	39 9	11	6 10	4 14

TABLE 20 Enclosure A: Sunken feature 1

NO LOCATION F TYPE	$\begin{aligned} & 610 \\ & \text { SF1 } \\ & \text { FILL } \end{aligned}$	$\left\lvert\, \begin{aligned} & 611 \\ & \text { SF1 } \\ & \text { FILL } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 602 \\ & \text { SF1 } \\ & \text { FURN } \end{aligned}\right.$	$\begin{aligned} & 580 \\ & \text { SF1 } \\ & \text { FURN } \end{aligned}$	$\left\{\begin{array}{l} 577 \\ \text { SF1 } \\ \text { FHL } \end{array}\right.$	$\begin{aligned} & 554 \\ & \text { SF1 } \\ & \text { PIT } \end{aligned}$	$\left\lvert\, \begin{aligned} & 564 \\ & \mathrm{SF1} \\ & \mathrm{PIT} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 571 \\ & \mathrm{SFI} \\ & \mathrm{PIT} \end{aligned}\right.$	$\left\|\begin{array}{l} 550 \\ \text { SFI } \\ \text { FTIT } \end{array}\right\|$	599 SF1 FILL	$\begin{aligned} & 514 \\ & \text { SF1 } \\ & \text { FIL } \end{aligned}$	$\begin{aligned} & 516 \\ & \text { SF1 } \\ & \text { FILS } \end{aligned}$	551 SF1 EILL	S98 SF1 FILL
Species														
Hordeum (grain) hulled asymetric*	5	2	1	6	1	6				11	3	2		9
hulled symmetric	1	1				7				8		2		6
hulled cf asymmetric			1						7					
hulled of symmetric		1		3					3	1				
hulled	4			2	2	6			2	$3+15$				10
* syn H vulgare L														
H vulgare L (rachis internode)	1									2				
H cf hulled							1							
indet asymmetric								1					1	
indet grains	6	2		$10+2 \mathrm{~F}$	2	$16+2 F$			14	33		1	$5+1 F$	$12+2 \mathrm{~F}$
Triticum dicoccum Schubl		1												1
T dicoccum (rachis internode)		1								:				
T ef dicoccum														1
T sp										2				1
Avena so.		1				1				4				2
cf A sp.						1								
$\ddot{\text { Cerealia indet }}$	2					1 F			3	$4+4 F$			1+1F	
Chenopodium album type						1			2					
Galium sp.							1							
Plantago lanceolata L						1								
Polygonum aviculare type	1													
P cf hydropiper						2								
p convolvulus L										1				
P persicaria/lapathifolium	2	1		6		5				2	1			
P sp.	1								2	i				
Raphanus raphanistrum L (capsule segment						1								
Runex sp		1				i+1F				1				.
Indet				$2+2 \mathrm{~F}$		1			1					
Quantifiable fragments Vol of soil (litres)	23 8	11 8	2 18	$\begin{aligned} & 29 \\ & 12 \end{aligned}$	5 6	$\begin{aligned} & 49 \\ & 10 \end{aligned}$	2 14	$\frac{1}{6}$	$\begin{aligned} & 34 \\ & 10 \end{aligned}$	$\begin{array}{r} 74 \\ 6 \end{array}$	4	5 8	8	42

TABLE 2E Enclosure A: Sumken features 2 \& 3

F NO AREA E TYPE	$\begin{aligned} & 546 \\ & 542 \\ & \text { SP } \end{aligned}$	581 SF2 FILL	$\begin{aligned} & 582 \\ & \text { SF2 } \\ & \text { F1HL } \end{aligned}$	517 SF2 FILL	568 SF2 FILH	$\begin{aligned} & 614 \\ & 523 \\ & 2 T I \end{aligned}$	016 SF3 Fisi,
Species							
Hordeum (grain) hulled asymetric *	1			22	4	i	2
huiled symmetric	1			12	2	1	1
hulled	1			$12+1 F$:	Ξ	1
* syn. H vulgare L							
H cf. hulled					1		
indet asymmetric				3			
indet symmetric				2	,		
indet grains	1		1	10	2	\vdots	6
Triticurn sp.							
cf. T sp.				1			
Triticum/Hordeum							
Avena so.	1	1					3
cf. A sp.				1			1
Cerealia indet				$5+2 \mathrm{~F}$			4 F
Chenopodium album type			1				
Polygonum convolvilus L			1				
P persicaria/lapathifolium					1		
P sp.				1			
Indet							1
Quantifiable fragments Vol of soil (1itres)	5 8	$\frac{1}{7}$	3 6	69 7	11	7 4	16

PABHE $2 F$ Enclosure A: Pits and post-boles

F NO LOCATION F TYPE	$\begin{aligned} & 505 \\ & \text { PITI } \\ & \text { FILL } \end{aligned}$	$\begin{aligned} & 596 \\ & \text { PIT2 } \\ & \text { FILL } \end{aligned}$	$\begin{aligned} & 170 \\ & \text { PIT3 } \\ & \text { FILI } \end{aligned}$	$\begin{aligned} & 171 \\ & \text { PIT3 } \\ & \text { FIIL } \end{aligned}$	$\begin{aligned} & 342 \\ & \text { PIT3 } \\ & \text { FILL } \end{aligned}$	$\begin{aligned} & 343 \\ & \text { PiT3 } \\ & \text { FHIT } \end{aligned}$	027 PTT3 TTi	10I PIT4 FILL	$\begin{aligned} & 062 \\ & \text { PH } \\ & \text { FILL } \end{aligned}$	371 PH FIIL	387 PH FILL
Species							.				
```Hordeum (grain) ~rlled asymmetric *```			4	10	37		6	6			
hulled symmetric		1	1	4	14			2		1	1
hulled cf. asymmetric					4					1	
hulled		2	$2+15$	5	12		i				
* syn H vuigare L											
H cf. hulled cf asymmetric											1
cf. naked asymmetric							1	1			
indet asymetric					9					1	
indet symmetric					3						
indet grains		$2+2 \mathrm{~F}$	1	16	15		$14+15$	$7+1 F$			
cf. H sp. (grain)		1									
Triticum dicoccum Schubl				1							
I' dicoccum (glume bases)					4						
T cf. dicoccum				1	4	$\pm$					
T dicoccum/scelta				1							
T cf. aestivum					2						
T sp.					4						
Triticum/Hordeum			1	3							
Avena so.		1			18			6	1		
Cerealia indet	1+1F	$1+5 \mathrm{~F}$		$3+1 F$			$1+12$	$i$	1		
Carex so. (biconvex)				1							
Chenopodium album type	1			2			1	2	1		
Chenopodium/Atriplex					1						
Corvius avellana L (nutshell)	2 F										
Galeposis tetrahit L	2										
Polygonum aviculare type	1										
p convolvulus L					1						
P persicaria/lapathifolium	4		1			1		2			
P sp.	2						1				
Prunus of spinosa			1								
Rumex crispus/obtusifolius								:			
R sp .								2			
Indet								$i$			
Quantifiable fragments Vol of soil (litres)	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	8	$\begin{array}{r} 9 \\ 31 \end{array}$	49 12	$\begin{array}{r} 130 \\ 4 \end{array}$	2	$\begin{aligned} & 25 \\ & 62 \end{aligned}$	$\begin{aligned} & 31 \\ & 14.5 \end{aligned}$	3 8	3 6	2   5

TABLE 3 ENCLOSURE B: DITCHES AND POST-HOLES

F.NO. LOCATION	$\begin{aligned} & 4539 \\ & \mathrm{DCH} \end{aligned}$	$\begin{aligned} & 4537 \\ & \mathrm{DCH} \end{aligned}$	$\begin{aligned} & 4527 \\ & \mathrm{DCH} \end{aligned}$	$\begin{aligned} & 4533 \\ & \text { DCH } \end{aligned}$	$\begin{aligned} & 4567 \\ & \mathrm{DCH} \end{aligned}$	$\frac{4511}{\mathrm{EH}}$	$\begin{gathered} 4513 \\ \mathrm{PH} \end{gathered}$	$\begin{gathered} 4514 \\ \mathrm{PH} \end{gathered}$	$4515$	${ }^{4517}$
Species										
```Hordeum (grain) hulled asymmetric *```	1					$6+1 F$	155	72	29	
- hulled symmetric							72	29	9	
hulled cf. symmetric						1			3	
hulled						2	26	22	$4+4 F$	
+ syn H vulgare L										
H indet asymmetric								5	1	2
indet symmétric								1	1	
indet grains			1			3	20	32	$6+1 F$	
Triticu dicoccu Schubl						1	169	44	8	
T dicoccu (glue bases)							4			
T cf. dicoccu							52	21	1	
Tr dicoccu/soelta							2	4		
T cf. aestivu						2	2			
T so.						:	21	5	1	
T so. (quue base)							1			
Avena sp.						IF	13	5	$5+1 F$	
Cerealia indet		1			1		24	$5+25 \mathrm{~F}$	$10+11 \mathrm{~F}$	
Bromus secalinus/sollis							2			
Carex so. (biconvex)							1			
Chenopodium album type				1					2	2
Folygonus aviculare type									1	
P persicaria/lanathirolium	1						6			
Polygonaceae/Cyperaceae							1			
Rubus sp.	.			1						
Rubex sp.									1	
Indet			1		1	2	1		2	.
Quantifiable fragments Vol. of soil (iitres)	$\frac{2}{6}$	1 8	2 17	22	12	17	$\begin{array}{r} 572 \\ 10 \end{array}$	$\begin{array}{r} 2 \angle 6 \\ 11 \end{array}$	$\begin{aligned} & 84 \\ & 10 \end{aligned}$	4 9

TABLE 4 EACCOSURE C: DITCHES, PALISADE TRENCH, POST HOLES AND ROAAS OVET

F.NC. LOCATION F.TYPE	$\left\|\begin{array}{c} 4531 \\ \text { DCH } \\ \text { LOWER } \end{array}\right\|$	$\begin{aligned} & 452 \\ & \text { DCH } \\ & \text { MID } \end{aligned}$	$\begin{aligned} & 4016 \\ & \text { DCH } \\ & \text { MID } \end{aligned}$	$\begin{aligned} & 4059 \\ & \mathrm{ICH} \\ & \mathrm{MID} \end{aligned}$	$\begin{aligned} & 4079 \\ & \mathrm{DCH} \\ & \mathrm{MID} \end{aligned}$	$\begin{aligned} & 4066 \\ & \text { DCH } \\ & \text { ?NAT } \end{aligned}$	$\left\lvert\, \begin{gathered} 4505 \\ \text { PH } \\ \text { FILL } \end{gathered}\right.$	$\begin{gathered} 4053 \\ \mathrm{BH} \\ \mathrm{EHI} \end{gathered}$	$\left\lvert\, \begin{gathered} \div 523 \\ \mathrm{Pq} \\ \mathrm{FTH} \end{gathered}\right.$	$\begin{gathered} 4561 \\ \mathrm{PT} \\ \mathrm{FH} . \end{gathered}$	$\left\lvert\, \begin{gathered} 4564 \\ \text { PT } \\ \text { FILL } \end{gathered}\right.$	$\begin{gathered} 4565 \\ \text { PT } \\ \text { FILL } \end{gathered}$	4024 OVEN FILJ
Species								,					
Hordeus (grain)													
hulled symmetric													1
cf. hulled									-			.	
indet. grains					1			-					
Triticum cf. aestivem L.					1								
Avena sp.					3	1	1	:	1	2	2	2	1
cf. A. sp.									.		1	1	
Cerealia indet. (grain)	1	2	1		1				\vdots				
(cula node)				1									
Chenopodium album type		1				2	2				1		
Chenopodium/Atriplex				2				*	3				
Galeopsis tetrahit L.				1									
Galium cf. aparine L.					1								
\therefore convolvulus L.				1	-								
Rosaceae undiff.													1
Indet.					I +1 F			2	\vdots		1		
Quantifiable fragments Vol. of soil (litres)	1	3	$\frac{1}{6}$	5 7	8 49	${ }^{3}$	3	11	7 $\div 2$	3 8	4 12	3 12	3 10

Cereal plants are represented by grains and a few chaff fragments. The majority of grains were ldentified as hulled barley (Hordeurn sp.), malniy with asymmetric dimensions. In six row barley (H. vigare l.), asymmetric gralns outnumber symmetric grains by $2: 1$. All identifiable batey rachis internodes also belonged to the six row species; but with so fow chaff fragments, the preserice of other species, (eg H. distichon L.) comnot be ruled out.

The maln wheat specles appears to be emmer (Triticum dicoccum Schuibl.). There were several grains which resembled emmer and spolt (T. emmer/spelta), and a few grains of possible bread wheat (1. cf. aestivum s.I.). Many grans were not identifiable to species. The few glume bases were identified as emmer or possiblo emmer.

Oats (Avena sp.) are represented by grain only, so it is impossible to determine whether cultivated specles (A. sativa L., A. strigosa Schreb.), or merely wild species (A. fatua L., A. sterilis L.) are present.

There was a narrow range of wild species. Most could have grown as weeds of crops or in disturbed places generally (eg Polygonum, Chonopodum and Atriplex spp., Galeopsis tetrahit L., Galium aparine L.). Some species are common today in darnp, sometimes wet places (eg Polygonum lapathifolium, P. hydropiper, Carex spp.). Wild edible species wore ropresented by a few hazel (Cory/us avellana L.) nuthell fragments, a sloe (Prunus spinosa L.) stone and a single seed of raspberry/bramble (Rubus spp.).

Enclosure A (Tables 2A-2F)

A number of buildings and other features are represented: the inner ditch, features in the entrance area, Buildings 1-6, Sunken Features 1-3, and various pits and post-holes. Most samples were dominated by hulled barley. In a few poorer samples, oat was dominant. Wheat, p:incipaliy emmer, was present in samples from the Inner ditch. Sunken Features 1 and 3 , and Pit 3. The quantitles were bow in comparison to other cereals. One sample (F. No. 342) produced two grains of possibie bread wheat.

Two thirds of the somples produced less than twentr components.

Only three had more than fifty remains. These came from Sunken Features 1 and 2 (F. Nos. 599,517) and Pit 3 (F. No. 342) and were dominated by barley with fow non cereal remains. Whilst samptes from Enclosure A lackod strow (cu'm) nodes, chaff and woed seeds, most were too small to be considered full processed crop products. Some may have resulted from small scale activitles, such as final crop cleaning or cooking accidents. Howover, the general spread and homogeneity of the samples is likely to reflect considerablo post-depositional disturbance at the site.

Most wild species from the Enclosure A samples were very genoral weeds (see above). Wild radish (Raphanus raphanistrum L.) and sheep's sorrel (Rumex acetosella agg.) Indicate more acid conditions. The latter is a possible component of heath vegetation. Autumni howkit (Leontodon autumnalis L.) is also found in meadows, pastures and on screes.

Enclosure B (Table 3)
Two main context types wero represented: ditch fills and the post-hcles for a structure just inside the north of the east entrance. The ditch fills produced a scatter of barley grains and weed seeds. In contrast, the post-holos (F. Nos. 4513, 4514, 4515) proved to be the richest samples from the entlie excovation.

The main cereal was hulled six row barley, but there were large quantities of wheat grains (up to 47% of total cereals). The principal wheat specles was emmer. There were a few occurrences of pussible bread wheat and emmer/spelt, and indeterminate oat grains were also present. These may have been contaminants of the main crops. The appearance of some wheat grains may also reflect preservation conditions.

These samples had few chaff iragments and weed seeds, despite hoving many more cereals than samples elsewhere. Onty rye-brome/lop-grass (Bromus secalinus/molis) was nct seen previously. These species tend to grow on llght, dry solis. The composition of the samples from the post-holes is suggestlve of fully cleaned, stored crop products.

Enclosure C (Table 4)

Features containing plant remains included an oven, the enclosure ditches, the palisade trench and a post-hote. The oven (F. No. 4024), thought to be assoclated with the Roman temporary camp (Enclosure B), produced sing'e grains of barley and oats, and one poonly preserved weed seed (Rosaceae undiff.). The remaining samples were extremely poor in plant remains. The most frequent cereals were indeterninate barley and oats. Single finds of possible bread wheat (l. cf. aestivum) and a cuim (straw) node came from the mldidle ditch fills. There was a similar, but smaller range of wild specles to those seen in samples from the other enclosures.

The routine and spectal soll cralyses S Cater

The routine soil analyses
Methods: All samples were swojected to three analyses, with the soll in a field-moist condition. pH was determined in a 1:2.5 sout-distilled water mixture. Loss on ignition used c 10 g oven dry soil hgrited at $400^{\circ} \mathrm{C}$ for 4 hours. Phosphate was determined using a spot test for easily available phosphate (Hamond 1983). Samples wero rated on a three paint scale (Low, Mecilum, Higir; Hamond, 1983,57), using the time taken for a blue colour to develop following the addition of the two reagents to the sample. Results: The results have been anaiysed by excavation trench, and only summary trench data and exceptional samples are refered to here. Phosphate results are summarised in Table 5. Most samples gave high ratings, but there is a cloar difference in the frequency of medium and low ratings between Enclosure A and Enclosures B anci C . The five low and modium readings from Enclosure A are from fills of the main enclosure ditches.

Table 5: Summary of spot phosphate test results:

Enclosure A (subdivided by quadrants or the enclosure)				
Quadrant Low	Medium	High	Total	
SF	3	1	99	103
NW				0
NE	1	62	63	
Enclosures B and C				
C	5	10	23	38
B/C	4	10	21	35
Unenclosed Area		4	4	

Loss on Ianition reults are almost all in the range 2.8% and onty tweive samples exceeded 10%. Of these, the nine from Enclosure A are from contexts noted in the fietd as charcoal rich. The two samptes from the unenclosed area are associated with a cremation burial, and one sample from Enclosure B was furf redeposited in the ditch. This was the arty contaxt on site which was rich in organic matter.
pH results were in the range 5.3-6.9. The mean value for Enctosure A was 6.4 and for enclosures B and C, 6.0 .

Discussion: The results show broad dlfferences between Enclosure A and Enclosures B and C . This reflects differences in the dominant types of context excavated. Most contexts in Enclosure A were fills of small features or spreads of sediment caused by human activity. In the other enclosures, most of the contexts were sterile ditch fills, and ihe occupations were apparently much briefer than that of Enclosure A. With one exception, elevated loss on ignition results were caused by the presence of charcoal; and they were concentrated in Enclosure A. Individual pH and phosphate results seemed to have no archacological significance.

A mberemorphological analysts of the bwer diteh filis of Enclosuro B, the 'Tur' S Corter

The stoneless, banded loams forming the lower fill of the ditch of Enclusure B contrast shorply with all other ditch fills on site, Including thiose of the earlier Enclosure C ditch which was on the same line. They were interpreted in the field as turf in both Clarke and Websters' excavations in 1953/4 anc, in the present excavations. The sediments were sampled for thin sectloring to address the following questions:
i) Does this sediment represent turves?
ii) If it does, what condition were they deposited in?
iii) What was their original nature?

Four undisturbed soil blocks were collected, three from the east ditch (contexts $4533,4540,4568$) and one from the titulus (4552). Thin sections, 8.5 cm in size, were prepared from these blocks by the Deportment of Environmertal Science, University of Stirling and described using standard methods (Bullock of al, 1985).

Tho micromorphologlcal analysis of soil thin sections provides a description in terms of basic mineral and organic components, the organ'sation of these components and the nature of foatures resulting from soil processes (pedofeatures).

The mingral components are similar ir, all four sections, with a coarse fraction of fine and medum sand grains and a silty fine fraction. The fine fraction consists of quartz and mica grains, with phytoliths and diatoms in variable quantitles. Coarse sand and larger mineral fragments are absent, except for very rare rounded stones. The coarse fraction is $20-30 \%$ of most of the sections, Indicating a texture of sandy silt loam to silt loam. Basic organic components are very variable through the sections, and include polten grains, fungal spore cases, wood charcoal and fragments of plant tissue.

The organic material tends to be concentrated ha bands, whilst the coarse mheial material is often clustered and occasionally banded. They are futher organlsed into a soll structure which varies from massive with amost no voids, through a channel structure with chonnellike vaids. to a
complex crumb/granular structure with channels and common packing volds. Textural pedofeatures are represented by rare coatings of limpld clay on vold walls in limited areas of two sections. Amorphous pedofeatures arey more abundant, consistlrg of two types of fernginous nodule or mottle: i) fragmented pseudomorphic nodules developed in plant tisisue fragments; ili) orthic impregnative nodules. Excrement pedofeatures were abundant and section 4533 was dominated by invertebrate excrement, ranging from very small ($<100 \mu \mathrm{~m}$) ellipsoldal excrement to large ($>5 \mathrm{~mm}$) mombated excrement.

The absence of mineral particles larger than mediurn sand, and the presence of a range of common organlc components, indicates that the source of these sodiments is the A horizon of a stable invertebrate-sortert woll. This supports the field interpretation of turf, but only one of the sections (4568) has a structure which can be interproted as part of an intact turf. A 1.5 cm thick band (area 2 in this section) is dominated by diatorns and phytoliths with some sitt-sized mineral grains. Many of the diato ns are complete pennate frustules with a preferred orientation parallel to the boundaries of the band. This narrow band is the soil surface, with phytoliths derived from the now decomposed vegetation. Similar bands have been noted on other archaeological buried soil surfaces (Romans and Robertson 1983, 66). The stratigraphy and nature of the banding in section 4568 suggest that the turf surface (area 2) is associated with area 1, the band above it, and therefore that this turf was upside down in the ditch.

The absence of intact turves in three of the four sections reflects soll processes which have affected the turf before and after deposition in the ditch. The relationships of the various pedofeatures to the soil structure allows the reconstruction of the sequence of events.

The most recent features are vertical channels left by roots which have penetrated from the modern soll surface. The roots hove malnly been consumed by invertebrates, leoving clusters of exciement in the channels. The chanriels cut through areas of impregnative fernginous mottles formedt by the movement of tron in waterlagged conditions. These motties impregnate areas of crumb/granular structure which consist of invertebrate
excrement, Indicating a phase of mixing prior to wateriogging. Not all sectlons are affected by this mixing. and the one intact turf identified has a massive structure cut only by modem root channels. The size sorted structuro of the sediment suggests that the turves originalit had a crumb structure. The massive structure of the turf in 4508 is therefore the rosult of compaction or slaking after the turf was cut, and the crumb/granular structure in some sections is the result of invortebrate mixing after deposition in the ditch.

The fragmented ferruginous nodules in all four sections pre-date the Invertebrate mixing, and are therefore not the result of the phase of waterlogging which created the Impregnative nodules. Trese nodules are. pseudomorphs of plant roots and stern fragments, so it is suggested that they formed in the vegetation buried in the turf bank. Waterlogged, reducing conditlons which would promote their formation would have been easily established in this situation.

The survival of one intact fragment of furf shows thai at least some turves entered the ditch as coherent clods. Sedimentary banding in 4533 and 4540 shows that there was also disaggregated soll present. Stratigraphic evidence suggests that the turf was intentionaily deposited in the ditch in one operation. The presence of disaggregated soil could have resulted from the breakdown of turves in the bank or in the ditch immediately after their redoposition, during the initial stages of compaction.

The soil that the turves were cut from must have had an extensive fine root system, and was therefore under some form of grassland. All structure and pedofeatures of this soll have been destroyed by subsequent physlcal disruption and soll processes. There is no evidence for the stze of the cut turves.

Records of soll profiles taken before excavation indicate that the modern soll had a B horizon in the area of Enclosure A but not around Enclosures B and C . This was conirmed in excorvation, and the B horizon was shown to pre-da;e all features in Enclosure A. Horizon depths for a typtcal Yarow Series soil (Bown \& Heslop, 1979, 145) like that at Caronbridge hove a 27 cm thick B horizon. It is possible that the absence of the B thorizon is the result of turf stripping. This implies that in aimost 2000 years of pedogenests a
new A horizon thas fomed in the original B horizon, but no new B horizon has doveloped (except in limited areas with very soft sandy subsoit). This is possible if tree cover was never re-established. More dataided sad mapping is required to identify the precise limits of the area of sod currently lacking a B horizon.

Conclusions: The distlnctive sediment in the base of the Enclosure B ditch is a mixture of turf and turf-derived soll. It was dumped into the ditch, presumably from an adjacent turt bank, in one eplsode. Iron mobllisation in waterlogged conditions has created abundant emophous femginous pedofeatures, and this is the cause of the baloing visible in the field rather than actual turf boundaries. Modern soil profile depths may indicate the source of the turves close to Enclosure B.

Vessel 1: (CB 69 find Nos. 1, 2, 3, 14 Context 3004)
Coliar and rieck soctions of a tripartite um. Internal diameter of rim: 280 mm .
Maximum diameter (at shouidier): 330 mm . Thicknows of walis: $10-15 \mathrm{~mm}$.

The rim has a simple internal bovel decorated with diagonal impressions of twisted cord. At some points there is a second tine of impresslons, the two lines torming chevrons.

The collar is stralght or very slightly concave. Below the collar the vessel narrows in diameter at the neck before expanding to form a sharply defined shoulder. The collar and neck aro each ciecorated with four rows of twisted cord impressions, forming w herringbone pattern. These inprossions are deeper and longer than those on the intemal rim bevel.

The fabric is a fine sanciy ciay tompered with around 50% of rock and possible organic fragments up to 10 mm in length (see Thin Section Petrology, below). In section, the exterior is red-brown and the interior black, indicating that the pot was fired upside down. N-shaped coil junctions are vistble on some of the sherd breaks, and it is probable that the exterior of the vessol was slipped.

Vessel 2: CB 89 find No. 68 Context 3014
Several rim and numerous body sherds, 15 mm thick. The rim sherdis have an inverted profile, but too little remained to enable the diometer to be determined. The vessel was made from a fine micaceous cioy tempered with 30% of angutar rock fragments up to 10 mm in length, and was red on the exterior and grey on the interior, agaln indicating that it had been fired upstde down.

Thin section petrology of the urns D Dixon

Vessel 1: Examination of both the smoothes stice and the thifi section showed that the pottery contained two types of fragments: arngular dull grey inclusions, and gold/tan coloured jnclusions.

Petrographlc examingtion showed the grey fragments to be moderately weathered basalt, composed of olivine (one phenocryst, the rest groundimass), pyroxene, plagloclase and magnetite. The larger fragments, up to 8 mm in length, terided to be fairly' rectangular; the smailer ones were more Irregular.

The gold/tan inclustons vary in size and shape from a large chunk (ϵ. $m m$ by 4 mm), to round and elongato fragments. All are bright gold in transmitted light and isotropic under crossed polars; they are therefore not crystaliine. The varied shapos and shrinkage cracks are not consistent with volcanic glass. An organic origin seems probabie.

The clay contains very infrequent, very firie grace paticles - small particles of disintegrated basalt, and others which are almost centainly quartz (although it is not possible to distinguish opticaliy between minute fragments of quartz and feldspar).

Vessol 2: The section and smoothed sllce showed a very uniform brown clay with angular grey fragments (some with red specks), ranging from very coarso (up to 10 mm) down to medium grade (2 mm).

Tho temper fragments are all porphyritic olivine basalt. The red specks are olivine phenocrysts which have been almost entirely hydrothemically oltered, during or after extrusion, to a deep red serpentine mineral (iddingsite). The pyroxene phenocrysts are represented by aggregotes of chtonte-type mlnerals. The groundmass olivhnes and pyroxenes are quite fresh, with plogloclase taths and magnetite.

The smallest frogments of basalt and basaltic minerals in the section are loss than 1 mm long, and there are also small quatz frogmenis. The clay appears to be the product of the decomposition of basalt; the ubtquitous quatz coutd be derived from under- or over-lying sandstone.

Conclusions: The Caronbridge ums were probably locally made. The most likely source of the basalt in the fabric is one of the Mows in the 'Carron Basalt Formation', a series of early Permlan basalts which covered the Thomhill Carioniferous Basln.

Longworth (1984, 81) noted that thin section anatysis of collared urns usually indicates local sources for the raw materials; and that it is rare to find pairs of urns showing close similaritles in form and decoration. He concluded that the tradition was a domestic one, rather than a speclalised industry. The thin section results for Vessel I support this hypothesis.

The crematod bono S Porker

introduction

Cremations I and 2 had both suffered piough camage, and this was reflected in the condition of the cremated bone. The bone from Cist ' 2 , which had suffered the worst disturbance, was more heavit, wom than that from Cist 1. The most heavily wom bone was found in Cremation 3, however, which had not been disturbed.

The white colour of most of the bone from all three burials indicated that they were burnt at a consistently high temperature; although some bones from Cist 1, notably from the pelvis and spine, were less well bumt.

Non-osseous inclusions were rare in all the cremations, athough there was somie stone and charcoal in Cist 1.

The bone fragments from Cist 1 were the largest, and those from Cromation 3 the smallest; this is reflected in the amount of physical anthropological data which could be recovered from them.

Cist 1

The bone was well fragmented, cind the surfaces of the tractures were clean. Their appearance was consistent with deliberate crushing of the bone affer it was burnt. Some bone had been clistorted, particuiarly cranial fragrinents. The compact bone was generally better preserved than the trabecular bone.

The colour ranged from a highly calcined white, through light blue, dark blue. light grey, and dark grey to black. Some trabecular bone was unbumt. Some fragments, mostly from the limbs, had turquoise or blue spots; and one proximal pholange had a red-brown shiny deposit on ths surface. Most of the bone was white; the darker colours tended to appear on the extremities, and the lower spine and petvic fragments. The darker cotours were gradedi through the thickness of the bone, lightesi on the outside and dankest on the inside.

Minimum number of individuals

Cist 1 seems to have contained the remains of three individuals of different ages. The cremated remains of one codult are usualy expected to weigh approximately $2-2.5 \mathrm{~kg}$; the remains from Cist 1 welghed approximately 4.7 kg , which in itself indicates that more than one individual was present. The anterior aticular surface of the first cervical vertebra was duplicated, and throe superior borders of the orbit were recovered, indicating the presence of at least two Individuais. This is confirmed by the presence of bones and teeth from an adult and from a smail child. There were aiso some very immature bones suggesting the presence of a third individual, on even younger child.

Age

The presence of fully formed and immature teeth and bones testifies to the presence of both an adult and a child. The child's dentition indicates an age of between 3 and 12 years, but the curvature of the mandible suggests that the age is towaras the lower end of this range. A very tiny rib. an unfused verteural arch and other very small and immature bones indicate that the third individual was an infant or neonate.

Sex
The fragmentary nature of the bones and the age of two of the Individuals provented the determination of their sexes.

Pathology

Two ribs had damage of their s'emal ends, likely to have been caused by an infection. One of them had a srinuth-surfaced depression of the kind that occurs as a result of an abscess. Two fragments from a right second metatarsal were misaligned in a way which lndicates that they had been broken and healed.

Cist 2

All the fragments from this cist had a chaliky texture, and the frocture
surfaces were wom and rounded. On the whole, the condition of the bone suggested that they had been more exposed to the effects of unprotected' interment than those from Cist 1. Ah the bone was white, with soil staining.

Minimum number of individuals

There was no duplication of bones, and there was only slight evidence for developmental differences. It therefore seems tikely that there was only one individual in this cremation.

Age

A fragment of maxilla with the recess for an unerupted tooth, and a number of fragments showing the blllowy surface associated with an unfused epiphysis, indicate that the remains are those of a fuvenile. The fragmented nature of the bone prevents accurate ageing, but the individual cannot have been over 15 years old.

Sex
It was not possible to sex this incividual

Inclusions
There were three fragments of bone which, did not appear to be human, but examlnation by F McCormick could not confirm the rion-human Identificatlon (pers comm).

Cist 3

Most of the bone from this buriai had a chalky texture and was very fragmented, with wom fracture surfaces. A small collection of bone was clean, with very clear fracture edges. Thls bone seemed unburnt.

The majorty of the bone was white. The unburnt bone was light brown.

Minimum number of individuals

There was no evidence to suggest the prosence of more than one individual.

Age, sex and pathology
No evidence survived

Cotalogue description of the cremated bone

Cist 1: Context 3004
Total welght: 4709 g
Fragment size range: Dust - 115 mm
Average fragment size: $10-15 \mathrm{~mm}$

Condition of the bone
Well fragmented, with clean fracture surfaces. Some distortion, especlally cranial fragmenis. Compact bone better preserved than trabecular bone. Some trabecular bone was unbumt.

Colour

Ranging from a higinly calcined white through light and dark blue, light grey, dark grey to black. Some turquolse or green/blue spotting. especlally on limb bones. One proximal phalange had a red/brown shuny doposit.

Most of the bone was white. The darker cotours appeared on extremitles and pelvic girdle fragments, and were graded through the thickness of the bone, with white on the outside.

Skeletal elements present
Skull: Parts of the parietal, temporal, frontal and occipital bones. Parts of an extemal auditory meatus and the malleus ear bone. Some of the bone from the base of the skull, including the rim of the foramen maonum, the condyles for the atias, and the petrous portion.

Facial bone prosent included remans of three orbits, a matar bane.
an anterior nasal spine, the palate and much of this , mavitary reglon. Fragments of mandible included two mandibutar conctyles, parts of the ramus, the cronold process and the body of the bone (this, like the maxilary fragments, showed traces of tooth sockets).

Dentition:

```
Maxilla right -----321 --34---- left
Mandidle right -7------ ---45-7 left
```

Over sixty fragments of tooth root (mainly from molars). All the fragments whilch could be replaced were from a sub-adult, but Included botin permanent and milk teeth. None of the teeth retained enamel. Thoy ranged in colour from white to blue/black. All the tooth roots were vory friciole.

Vertebrae: Mainly vertebral arches and articular surfaces. Cervical, thoracic, Iumbar and sacral regions ali represented, including: left and right portions of the first cervical, the dons of a second cervical and two fragments of atlas (each with the artlcular surface for the dens of the axis or second cervical). Several thoraclc spinous processes, one of which had an unfused surface at its tip. Part of the sacro-iliac articulation the alar), and a complete first sacral segment. Two pieces of an immature ventebral arch.

Scapulae: Part of the inferlor border, some of the acromial spine and most of the surface of a glenold covity.

Clavicles: The clavicle readily becomes undentifiable in the mass of tubular fragments found in cremations. However, two large fragments were identified as the sternal end of an unsided clavicle and the acrombal or hateral part of a right clavicle.

Manubrium and Sternum: Many fragments of unidentifinate trabecula bone were recovered, some of which could be from these bones. An almost comptete immature manubrium and parts of an odult stemum were

2: C3

recovered.

Ribs: A right hand first rib. Soveral rib heacis and tubercles. One very small, complete Immature rib. Many fragments thought to be from ribs, Including some fragments of very small ribs.

Humeril: The identification of humerus shaft fragments is problematic, espesciaily in multiple cromatlons with Individuais of different ages. Only distal eicds or shaft fragments with distinguishing features have therefore been counted.

The trumpet brooch L. Allason-Jones

Catalogue

Total length: 56 mm ; width across head: 18.5 mm ; length of catchplate turnover: 9 mmi; diameter of foot: 8 mm .

Description

(CB 89 find No. 67 , context 394)
Copper alloy trumpet brooch (ilius 23) with traces of white metal coathing on the catchplate and head. A short stop projects from the top of the head, but there is no sign of a headloop. The head ls decorated with a design of two abutting clrclos on both flanks of the upper bow. The motifs have been heavily stampeci so that the centres stand proud like bosses. A single shallow depressed line encompasses both groups of motifs. The upper bow drops through a sharp right angle and encraaches on the head by means of converging rib-and-groove motifs. The ring-and-boss motifs are stamped In a row below the knee, with two incised linos forting a triang'e above. The totui tifcot is zoomorphic.

Beiow the knee there are three projecting ribs, the central one of which predominates. Each curved rib is divided by two transverse grooves, but continues across the back as a single shallow ridge. The lower bow is of tapering triangular section and is divlded into two vertical reglsters by a raised border, each register containing a raised wavy line which falls to flll the avallable space. The bow ends in a transverse rib which runs around the back below the catchplate. The fcot is splayed and fluted, and ends in a countersunk boss.

The brooch was cast in one with the decoration below the knee. The circles or bosses, however, glve the Impression of having been stamped later, whille the metal was still malleable (posslbly during a secondary heating). Analysls of the surface plating has indicated a lead/tin coating wilh traces of silver, Iron, antimony, and manganese. Insufficlent sitver was present to suggest silver plating, nor were traces of stiver wire found between the central ribs. The presence of lead/tin alloy on the cotchplete

suggests that it was not confined to limited areas as a decorative feature, but covered the winole surface of the brooch. No trace of enamelling was noted.

The penannular brooch, sword and sickle O Owen and R Welander

Catalogue

1. Silver-gilt penannular brooch
'Pictish', late 8th to early ith century AD
Hoop diameter: 5.8 cm
PIn length: 11.1 cm
2. Wrought Iron two-edged sword blade fragment with remnant scabbard; in elght Joining fragments.
'Dark Age', late 9th to early loth century $A D$
Overall length (reconstructed): 740 mm
Maximum width: 57 mm
Moximum thickness: 10 mm
3. Wrought tron sickle blade in three joining fragments
'Dark Age', late ith to early 10th century AD
Overall length (reconstructed): 120 mm
Maximum width: 20 mon (approx)

Copper alby and tron objects B A ford

Copper alloy

1. Perforated sheet fragment, posslbly part of a cisc or decorative fithing, perforated in the cenire (for a rivet hote?). Diameter of thote 5 mm . Thicknoss of shergt 0.5 mm .

CB 90 find No. 6 , context 550 (fill of a pit in south-west comer of Surken Feature A).
2. Four fragments of a tube made from a rolled sheet, tapering to one end. Probably part of a tag from the end of a lace. Thuckness 0.5 m . CB 90 find No. 49, context 145 (topsoil)

Objects of iron

1. Incomplete, very corroded cast iron plate, triangular in cross-section, with a raised edge. A very corroded circu'ar projection, whilch was originally hollow, extends from the corner and is probably part of a hinge. Length 49 mm.

CB 90 find No. 4, context 545
2. Two badly corroded fragments from the arm of a very small horseshoe, with two rectangular nail holes. Length 52 mm , width 12 mm .
CB 89 find No. 43, context 84
3. Knife blade. Triangular blade tip missing: incomplete whittle tang set centrally to the blade. Length 210 mm , max. width 22 mm , thickness of blade back 12 mm , length of tang 40 mm .
CB 89 find No. 34, context 36
4. Three very corroded fragments of a triangular blade. Length 68 mm , with 20 mm , thickness of blade back 6 mm .
CB 89 find No. 38 , unstratified
5. Nail wilth square fiat head and a rectangukar mross-saction. Length 37 mm .

CB 89 find No. 47. context 36
6. Sickle with a narrow blade curving from the tang and straightening out towards the tip, which is missing. The tang is incomplete. The x-radiograph shows evidence that the cutting edge was originally finely serrated. Length of blade 458 mm , iength of tang 73 mm .
CE 88 find No. 44 , context 84
7. Three fragments of very corroded iron sheet. Thickness 2 mm .

CB 89 find No. 60 , context 206
8. V-shaped staple; the tips of both arms are broken. Length 60 mm , width 44 mm .

CB 89 find No. 48 , context 84
9. Very coroded washer. Diameter 27 mrn , diameter of hole 9 mm , thickriess 4 mm .
$C B 90$ find No. 38 , unstratified.

The giass J Henderson

1. Globular 'black' (deep translucent purple) bead.

CB 89 find No. 27, context 3001, topsoil (near Cists 1 and 2).
2. Annular translucent bottle green glass bead.

CB 89 find No. 16, context 1001, topsoil (in nottrwest quadrant of Enclosuro A).
3. Fragment of opaque white glass armiet.

CB 89 find No. 62, context 0170, pit fill (pit 3, Enc. A).
4. Translucent olive green vessel fragment.

CB 89 find No. 27, context 3001, topsoil (near Cists 1 and 2).
5. Weathered globular translucent brown bead.

CB 90, context 4527. (Temporary camp ditch).
6. Fragment of a 'faience' melon bead with gadrooned decoration on its exterior surface. The bead has a turquoise g'azed sufface and a silica-rich core.

CB 89 find No. 40, context 16 (top fill of Suriken Feature 3, Enclosure A).

Anaiytical techniques

The compositions of objects 1-3 were analysed. Samples were mounted in epoxy resti and polished. A Cambridge Microscan 9 electron microprobe was used to produce quantitative analyses for all major, minor, and trace elements detectable in the glass. A 2ts program was used to corect and quantify the results. Typical ie: els of detection are given in the table. The analytical techritque is described more fulty olsowthere (Henderson 1988).

The glass technology

Compositions 2 and 3 are basically soda-kme-silica glasses, with the typleal levels of major and minor components normaly found in Reman glass in Eritain of the 1st to 3rd centuries AD. The alkali source used was probably a mineral such as natron, which would introduce c 1% chlorine $\left(C_{1}\right)$; and the sand used would probably have introduced the aluminium and fitanlum oxides ($\mathrm{Al}_{2} \mathrm{O}$, and TO_{2}). The green cotour of composition No. 2 results from manganese and iron oxldes, in this case prosent in the ratio of l:l, which is typlcal of Roman glasses. The armlet fragment (No. 3) also contained manganese and tron oxides in a ratio of 1:1. However, in this case the 0.7% antimony oxide $\left(\mathrm{Sb}_{2} \mathrm{O}_{3}\right)$ strongly suggests that the glass is opacifiod with crystals of calcium antimonate $\left(\mathrm{Ca}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}\right)$, althougin gas bubbles ore also sometimes found to opacify such glass.

The composition of No. 1, a deep purple glass, is very unusual. The main feature is its mixed-alkali composition (soda $\mathrm{Na}_{2} \mathrm{O}$ and potassiurr oxide $K_{2} 0$), with a signiflcantly lower chlorine level than found in compositions 2 and 3. The silica $\left(\mathrm{SiO}_{2}\right)$ level is cilso low, probably because the total alkali is high, but also because the manganese oxide (MnO) level of $6.6 \% \mathrm{ls}$ exceptionally high for a purple glass. It is unlikely that the production process used was intended to produce a visibly purple glass.

Artefact No. 4 was from a post-medieval wine bottle, and was not analysed. No. 1 may be of the same period.

The coarre stone A Clorke

1. Regular sub-spherical object of sandstona. Pecked all over to shape. Sandstone ball. $68 \mathrm{~mm} \times 61 \mathrm{~mm} \times 60 \mathrm{~mm}$.

CB 89 find No. 12, context 0001 (topsoil, Encloiure A)
2. Large irregular boulder of sandstone with a steep-sided, round-based hollow worked in one face. Probable pivot-stons. $420 \mathrm{~mm} \times 290 \mathrm{~mm} \times 230$ mm . Hollow c 80 mm dlameter, 50 mm deep.
CB 90 find No. 3, context 0545 (upper fill of inner aitch. Enclosure A)
3. Fragment of a sandstone ball, probabiy burnt. Spherical, pecked all over to shape. Diameter c 40 mm .

CB 89 find No. 32, context 1001 (topscil, Enclosure A)
4. Pebblo whetstone of fine-grained sandistone. Sub-rectangular cross-section. One face is concave, and lightly pecked with possible remnants of a polish. $115 \mathrm{~mm} \times 36 \mathrm{~mm} \times 27 \mathrm{~mm}$. CB 89 find No. 31, context 1001 (topsoil, Enclosure A)
5. Small thin pebble of silfstone. About a dozen small neat notches have been worked down one side, forming a round-toothed edge. $51 \mathrm{~mm} \times 29$ $\mathrm{mm} \times 4 \mathrm{~mm}$.

CB 90 find No. 1, context 4500 (topsoil, inside Enclosure B)
6. Fragment of vasicular lava. Naturaliy wom on unbroken outer face. No measurements.
$C B 90$ find No. 5, unstratified (Enclosure B area)

The vitreous waste E Slater

1. 4 main pleces, 6 small pleces. Baked and hoated clory. No vitrification, but a degree of porosity and fuston. 3 pleces with a high tron oxide content, mainly Fe203, and some complex Iron silicates. Could be classod as slag. CB 89 find No. 39, context 016 (Sunken Feature 3. top fill)
2. 2 pleces. 1 iron object. 1 plece of iron concretion.

CB 90 find No. 8, context 516 (clean gravel over top fill of Sunken Foature 1)
3. 8 pleces. i. o pleces red/orange baked or f ed clay, largest $20 \times 20 \times 16$ mm. Heated in oxidising atmosphere. Fine-grained lamellar structure. 2 pieces have original, concave surface; max. thickness it mm.
li. 2 pleces extensively heated on one suiface under reducing condilions. The heated surface is black/grey, with a degree of porasity, and grades through to a red/orange in the interlor. Coarser-grained, without lamellar structure.
CB 90 find No. 15, context 517 (black charcoul deposit, Sunken Feature 2)
4. 3 pleces, largost $40 \times 30 \times 15 \mathrm{~mm}$. Fine-grained clay, very simliar to 31 above. 2 pleces with a smooth original surface, flat of marginally concave. $C B 90$ find No. 10, context 510
5. Origirialy 1 plece, $30 \times 25 \times 20 \mathrm{~mm}$. Cinder.

Cb 20 find No. 13. Context 517
6. 2 pleces. i. Red/orange clay, $40 \times 25 \times 15 \mathrm{~mm}$. Lameltar structure, with visible loyering. There is a particularly thin layer on the original outer surface. This surfcce is smooth, malnly firt, but with some undulations.
4i. Ckry, $35 \times 30 \times 10 \mathrm{~mm}$, with a convex orkinal sufface. Heated on this surface, forming a thin vitreous hyer 2 mm deep. No metariferous or shog phases identified by XRD. Interior: red/orange clay grading to dark grey below the vitrified layer.

CB 90 find No. 10, conteat 550 (top fill of Sunken Feature 1, northeast comer)
7. 9 main pleces. i. 5 pleces of baked chay with red/orange inner surfaces grading to grey outer surfaces; the material was heated on the outer surfaces under reducing conditlons. Max. dimensions $90 \times 55 \times 20 \mathrm{~mm}$. The outer surfaces are porous; three show some vitrificution. In four cosos the heated outer face is original, and in all it is convex. No mataliferous or slag phases identifled by XFPD. All exarnined under x \mathcal{O} optical microscope, and two under electron microscope.

These are structural ceramizs heated on one face. If these had formed part of a fumace lining, the heated face would be concave rather than convex, and slag phases should be present.
ii. 2 piecos of fused lithics.
iii. 2 pieces baked and heatod clay, similar to No. 1.

CB 90 find No. 11, context 550

Material found in topsoil:
8. 4 pleces heated lithics, some partly vitrified. One piece more likely to be heated naturally than anthropajenically.
CB 89 find Nos. 4, 6, 9
9. 2 pleces of cinder.

CB 89 find N Nos. 30, 33
10. Originally one ptece, $60 \times 30 \times 20 \mathrm{~mm}$. Baked cloy with black, reduced exterior and red, oxidised interior. Central void, possibity from burt-out organtic material.

CB 89 find No. 17

Vitreous waste: analytical methods
This is an assemblage of heat-modified materials, originally interpreted Iri the field as furnace debris and slag. Theee main types of moterial are actually represented - fine-grained clays, coarser clays showing a greater depth of burning, and lifhics. Nearly all the samples have been heated, with the heating directed mainly at one face. The samples were first examinod visually and by optical microscopy at $\times 10$ and $\times 80$. The main areas of Interest for the clays were the nature of the material, its texture, any secondary phases, degree of porosity and any vitrification. If a full, inter.or cross-section was not vistble the plece was either broken in half or a small sample removed from one edge. Samples were taken from one face for X-ray diffraction, to identify any diagnostic phases such as fayalite 2(Fe, Mg. Mn)O.Si02; pyroxenes (Fe, $\mathrm{Zn}, \mathrm{Mg}, \mathrm{Mn}$)O.CaO.SiO2; or metal oxides. These are normally major constituents of man-made slags (Bachmann 1982). The surface sampled was the heated face, if one was present. Some samples were also examined by electron microscope to investigate the degree of vitrifactlon or porosity.

Radracarbon dates M Dalland

Calibration

The dates were caliibrated using data from Pearson et al (1986), producing a calibrated probability distribution (PD) for each date. The PD curves of the dates are shown in illus 24. The lines below each PD curve mark the short (SCR) and long continuous range (LCR). These are the shortest continuous ranges for which the probability of the dato to lie within their limits adids up to $\geq 68.26 \%$ and $\geq 95.45 \%$. These values are equal to the probabilities of the one and two sigma ranges of a Normal distribution. Taible 7 shows the SCR and I.CR of all calibrated dates from Camonbridge.

Adjusting the PD's of cates using stratigiciohic dato

The true age of material from stratigraphically related samples must reflect their stratigraphic position, to the extent that a context must pre-date a stratigraphlcally later one even if thalr radiocarion date ranges overlap. This enables the PDs of radiocarbon dates from such contexts to be adjusted to take account of their stratigraphic position in relation to other dated samples. The effects vary according to the degree of overlap of the PD between the diates irivolveci, and if a date lies between other dates. On this assumption, five dates were adjustea for stratigraphy. Table 8 shows the SCR and I.CR of these dates before and after adjustment. In illus 24 the unadjusted PD of these five dates have been replaced by the adjusted PDs,

The stratigraphic adjustment only makes small changes to the SCR and LCR ranges of the dates (table 8). in one, the SCR and LCR remain the same with only a slight change in the probability of the date to lie within these limits; the other adjusted dates show minor reductions in thelr SCR and LCR. The date most afiected by the adjustment is GU-2770 (from the primary fill of Enclosure A inner ditch). The SCR changed from BC 10-AD 110 to the $B C 35$ - AD 75, a shift circa 30 years back in time, with the range reduced from 120 to 110 years (8%). The LCR changed from BC 105 - AD 135 to BC 85 - AD 110, a shift back in time of circa 25 years and a reduction of the range from 240 to 195 years (19%).

Difference between dates:

Using the PDs of two dates, one can calculate the PD of the age difference between two dates. Table 9 shows the SCR and LCR of the difference PDs of three pairs of dates. Table 10 shows the data behind these calculations at 50 and 100 years resolutions.

Using data from the difference PDs, one can evaluate the probability of a date being older or younger than other dates. The probabilities quoted below are based on the data in Table 10.

```
Hypothesis: Probability:
GU-2767 is older than GU-2776 97.0%
(Sunken Feature 1) (Building 1)
GU-2766 is older than GU-2776 97.0%
(Sunken Feature 2)
GU-2771 is older than GU-2776 95.2%
(Pit 5, cutting inner ditch)
```

The probability that all three hypotheses above are true is calculated by multiplying the probabilities of each of the three hypotheses: $0.97^{*} 0.97^{*} 0.952$ $=0.896=89.6 \%$.

TABLE 6 UKCAIIERAIED DAIES

LAB.NO:	Context:	(BP) :	e:	Comments:
GU-2764	C 22	1820	50	Charcoal spread, enclosure. Pit, sunken feature 1. Sunken feature 2. Pit, sunken feature. Structure, enclosure A, phase. Surken feature 3. Inner ditch, primary fill. Inner ditch, secondary pit. Hearth 1, building 6. Hearth 2, building 6. Pit 4. Pit 1. Building 1. Penannular ditch. Cremation burial 3. Burial 1 (Not calibrated). Burial 2. Oven, enclosure C. Building 6. Pit 3.
GU-2765	C 580	1990	50	
GU-2766	C 517	1900	50	
GU-2767	c 555	1910	60	
GU-2768	C 589	1930	60	
GU-2769	C 624	2020	50	
GU-2770	C 357	1970	50	
GU-2771	C 206	1880	50	
GU-2772	C 52	1910	50	
GU-2773	C 65	1860	50	
GU-2774	C 101	2290	50	
GU-2775	c 504	2410	70	
GU-2776	C 120	1740	50	
GU-2777	C 348	2920	50	
GU-2778	C 2003	2920	50	
GU-2779	C 3004	6990	200	
GU-2780	C 3016	2950	50	
GU-2781	C 4029	1870	50	
GU-2932	C 354	1920	50	
GU-2933	C 27	2600	50	

TABLE 7 CALIERATED RADIOCARBON DATES

Sample:	BP:	S C R: Range:	Prob: \%	ick: Range:	Prob: \%
GU-2764	1820g50 BP	AD 125-AD 240	70.15	AD 85-AD 325	95.95
GU-2765	1990q50 BP	BC $40-\mathrm{AD} 85$	68.54	BC 105-AD 120	95.54
GU-2766	1900q90 BP	AD 80-AD 195	68.60	$A D 0-A D 230$	95.70
Gu-2767	1910q60 BP	AD 55-AD 200	69.09	BC 25-AD 235	95.49
GU-2768	1930 q 60 BP	BC 10-AD 125	69.20	BC 55-AD 215	95.64
	Adjusted	AD $0-A D 130$	68.98	BC 55-AD 210	95.65
Gu-2769	2020 q 50 BP	BC 95-AD 35	68.88	BC 145-AD 115	95.87
GU-2770	1970q50 BP	BC $10-\mathrm{AD} 110$	68.43	BC 105-AD 135	95.55
	Adjusted	BC $35-A D 75$ $A D 85-A D 195$	69.73 70.24	BC $85-A D 110$ $A D 25-A D 240$	95.67 95.68
GU-2771	1880q50 Adjusted	AD 85-AD 195 AD $90-\mathrm{AD} 195$	70.24 70.36	AD $25-\mathrm{AD} 240$ AD $30-\mathrm{AD} 235$	95.68 96.08
GU-2772	1910 q 50 BP	$A D 20-A D 140$	68.81	BC $20-\mathrm{AD} 210$	95.76
GIJ-2773	1850 q 50 BP	AD 90- AD 200	6996	AD 25 - AD 245	95.56
GU-2774	2290q50 BP	BC 460-BC 375	69.39	BC 480-BC 230	95.64
GD-2775	2410 q 70 BP	BC 570-BC 380	68.58	BC 800-SC 385	96.28
GU-2776	$1740 q 50$ BP	AD 210-AD 355	68.30	AD 140-AD 415	95.49
	Adjusted	AD $210-\mathrm{AD} 355$	69.33	AD 140-AD 415	95.81
GU-2777	2920q50 BP	BC 1220-BC 1030	68.99	BC 1285 - BC 930	95.80
GU-2778	2920 q 50 BP	BC 1220-BC 1030	68.99	BC 1285-BC 930	95.80
GU-2780	2950q50 BP	BC 1295-BC 1115	68.61	BC $1380-\mathrm{BC} 1020$	95.48
GU-2781	1870 g 59 BP	$A D 90-A D 200$	70.65	AD 25 - AD 240	95.75
GU-2932	1920q50 BP	AD $20-\mathrm{AD} 130$	68.98	BC 25-AD 205	95.76
GU-2932	Adjusted	AD $30-\mathrm{AD} 130$	68.56	AD 10 - AD 210	95.49
GU-2933	2600q50 BP	BC 830-BC 790	72.80	BC $850-8 C 570$	95.56

TABLE 8 THE EFFECT OF STRATIGRAPHICAL ADJUSTMENT OF CALIBRATED DATES

DATE:	ADJUSTED FOR:	$\text { RANGE } S C$	PROB:	- LCR: RAMGE: PROB:	
$\begin{array}{r} G U-2776 \\ \mathrm{GU}-2776 \end{array}$	GU-2768 > GU-2776 UNADJUSTED	$\begin{aligned} & A D 210-A D 355 \\ & A D 210-A D 355 \end{aligned}$	$\begin{aligned} & 69.33 \\ & 68.30 \end{aligned}$	$\begin{aligned} & A D 140-A D 415 \\ & A D 140-A D 415 \end{aligned}$	$\begin{aligned} & 95.81 \\ & 95.49 \end{aligned}$
$\begin{aligned} & \mathrm{GU}-2771 \\ & \mathrm{GU}-2771 \end{aligned}$	GU-2770 > GU-2932 \& GU-2771 UNADUUSTED	AD 90-AD 195 AD $85-A D 195$	$\begin{aligned} & 70.36 \\ & 70.24 \end{aligned}$	$A D 30-A D 235$ $A D 25-A D 240$	$\begin{aligned} & 96.08 \\ & 95.68 \end{aligned}$
$\begin{aligned} & G U-2932 \\ & G U-2932 \end{aligned}$	GU-2770 > GU-2932 \& GU-2771 UNADJUSTED	$\begin{array}{lll} A D & 30-A D & 130 \\ A D & 20-A D & 130 \end{array}$	$\begin{aligned} & 68.56 \\ & 68.98 \end{aligned}$	$\begin{aligned} & A D 10-A D 210 \\ & B C 25-A D 205 \end{aligned}$	$\begin{aligned} & 95.49 \\ & 95.76 \end{aligned}$
$\begin{aligned} & \text { GU- } 2768 \\ & \text { GU-2768 } \end{aligned}$	GU-2768 > GU-2776 UNADUUSTED	$\begin{aligned} & A D-A D 130 \\ & B C 10-A D 125 \end{aligned}$	$\begin{aligned} & 68.98 \\ & 69.20 \end{aligned}$	$\begin{aligned} & B C 55-A D \frac{210}{21 E} 55-A D \frac{1}{21} \end{aligned}$	$\begin{aligned} & 95.65 \\ & 95.64 \end{aligned}$
$\begin{aligned} & \text { GU-2770 } \\ & \text { GU-2770 } \end{aligned}$	GU-2770 > GU-2932 \& GU-2771 UNADJUSTED	$B C$ 35-AD 75 $B C 10-A D 110$	$\begin{aligned} & 69.73 \\ & 68.43 \end{aligned}$	BC BC $105-\mathrm{AD}$	$\begin{aligned} & 95.67 \\ & 95.55 \end{aligned}$

TABLE 9 DIFFERENCE BETWEEN DATES

DIFFERENCE BETWEEN:	RANGE:	PROB:	RANGE:	PROB:
GU-2771 1880950 BP, GU-2776 1740G50 BP	$40-235$	69.40	$-45-330$	95.90
GU-2766 1900q50 BP, and SU-2778 1740q50 BP	$85-275$	68.29	$-10-360$	95.53
GU-2767 1910G60 BP, and GU-2776 1740q50 BP	$90-295$	69.33	$-15-390$	95.89

2: D5

TABLE 10 SUMMARY OF PROBABILITY DISTRIBUTIONS BETWEEN DATES

50 YEARS INTERVAL

	C 555 older than C 120 (GU-2767 - GU-2776) >:			$\begin{aligned} & \text { D } 517 \text { older than C } 120 \\ & \text { (GU-2766-GU-2776) } \\ & \stackrel{y}{*} \text {) } \end{aligned}$			C 206 older than C 120(GU-2771 - Gi-2776)$>:$						
DIFFERENCE:				DIFFERENCE:									
800													800
750	0.0	100.0	. 0							750			
700	. 0	100.0	. 0	0.0	100.0	. 0				700			
650	. 0	100.0	. 0	. 0	100.0	. 0	0.0	100.0	. 0	650			
600	. 0	100.0	. 0	. 0	100.0	. 0	. 0	100.0	. 0	600			
550	. 0	100.0	. 0	. 0	100.0	. 0	. 0	100.0	. 0	550			
500	. 0	100.0	. 0	. 0	100.0	. 0	. 0	100.0	. 0	500			
450	. 2	97.7	. 3	. 1	99.9	. 1	. 0	100.0	. 0	450			
400	1.1	98.6	1.4	. 5	99.5	. 5	. 2	98.8	. 2	400			
350	3.3	95.3	4.7	2.1	97.4	2.6	1.1	98.7	1.3	350			
300	7.8	87.5	12.5	6.2	91.3	8.7	4.1	94.6	5.4	300			
250	13.7	73.8	26.2	12.6	78.7	21.3	9.9	84.7	15.3	250			
200	18.3	55.6	44.4	18.3	60.4	39.6	16.2	58.4	31.6	200			
150	18.8	36.7	63.3	19.9	40.4	59.6	19.8	48.6	51.4	150			
100	17.3	- 19.4	80.6	19.4	21.1	78.9	20.9	27.7	72.3	100			
50	10.0	9.4	90.6	11.0	10.1	89.9	13.6	14.0	86.0	50			
0	6.4	3.0	97.0	7.1	3.0	97.0	9.2	4.8	95.2	0			
-50	2.1	. 9	99.1	2.2	. 8	99.2	3.3	1.5	98.5	-50			
-100	. 8	. 1	99.9	. 7	. 1	99.9	1.3	. 2	99.8	-100			
-150	. 1	. 0	100.0	. 0	. 0	100.0	. 1	.	99.9	-150			
-200	. 0	. 0	100.0	. 0	. 0	100.0	. 1	. 2	100.0	-200			
-250	. 0	. 0	100.0	. 0	. 0	100.0	. 0	. 0	100.0	-250			
-300	. 0	. 0	100.0	. 0	. 0	100.0	. 0	. 0	100.0	-300			
-350	. 0	. 0	100.0	. 0	. 0	100.0	. 0	. 0	100.0	-350			
-400	. 0	. 0	100.0				. 0	. 0	100.0	-400			

100 YEARS INTERVAL

DIFFERENCE:	$\left\{\begin{array}{l} \text { C } 555 \text { older than C } 120 \\ \text { (GU-2767-(GU-2776) } \\ >: \end{array}\right.$			$\begin{aligned} & \text { D } 517 \text { older than } C 120 \\ & \text { (GU-2766-GU-2776) } \\ & \text { >: } \end{aligned}$			$\begin{aligned} & \text { C } 206 \text { older then C } 120 \\ & \text { (GU-2771 }- \text { GU-2776) } \\ & >: \end{aligned}$			DIFFERENCE:
300	0.0	100.0	. 0							800
700	. 0	100.0	. 0	0.0	100.0	. 0	0.0	100.0	. 0	700
600	. 0	100.0	. 0	. 0	100.0	. 0	. 0	100.0	. 0	600
500	. 0	100.0	. 0	. 0	100.0	. 0	. 0	100.0	. 0	500
400	1.3	98.6	1.4	. 5	99.5	. 5	. 2	99.8	. 2	400
300	11.2	87.5	12.5	8.2	91.3	8.7	5.2	94.6	5.4	300
200	31.9	55.6	44.4	30.9	60.4	39.6	26.2	68.4	31.6	200
100	36.2	19.4	80.6	39.3	21.1	78.9	40.8	27.7	72.3	100
0	16.3	3.0	97.0	18.7	3.0	97.0	22.8	4.8	93.2	0
-100	2.9	. 1	99.9	3.0	. 1	99.9	4.6	. 2	99.8	-100
-200	. 1	. 0	100.0	. 1	. 0	100.0	. 2	. 0	100.0	-200
-300	. 0	. 0	100.0	. 0	. 0	100.0	. 0	. 0	100.0	-300
-400	. 0	. 0	100.0	. 0	. 0	100.0	. 0	. 0	100.0	-400
-500	. 0	. 0	100.0				. 0	. 0	100.0	-500

